USE OF CONCISE SIGHT REDUCTION TABLES

1. Introduction. The concise sight reduction tables given on pages 286 to 317 are intended for use when neither more extensive tables nor electronic computing aids are available. These "NAO sight reduction tables" provide for the reduction of the local hour angle and declination of a celestial object to azimuth and altitude, referred to an assumed position on the Earth, for use in the intercept method of celestial navigation which is now standard practice.
2. Form of tables. Entries in the reduction table are at a fixed interval of one degree for all latitudes and hour angles. A compact arrangement results from division of the navigational triangle into two right spherical triangles, so that the table has to be entered twice. Assumed latitude and local hour angle are the arguments for the first entry. The reduction table responds with the intermediate arguments A, B, and Z_{1}, where A is used as one of the arguments for the second entry to the table, B has to be incremented by the declination to produce the quantity F, and Z_{1} is a component of the azimuth angle. The reduction table is then reentered with A and F and yields H, P, and Z_{2} where H is the altitude, P is the complement of the parallactic angle, and Z_{2} is the second component of the azimuth angle. It is usually necessary to adjust the tabular altitude for the fractional parts of the intermediate entering arguments to derive computed altitude, and an auxiliary table is provided for the purpose. Rules governing signs of the quantities which must be added or subtracted are given in the instructions and summarized on each tabular page. Azimuth angle is the sum of two components and is converted to true azimuth by familiar rules, repeated at the bottom of the tabular pages.
Tabular altitude and intermediate quantities are given to the nearest minute of arc, although errors of 2^{\prime} in computed altitude may accrue during adjustment for the minutes parts of entering arguments. Components of azimuth angle are stated to $0 \% 1$; for derived true azimuth, only whole degrees are warranted. Since objects near the zenith are difficult to observe with a marine sextant, they should be avoided; altitudes greater than about 80° are not suited to reduction by this method.
In many circumstances the accuracy provided by these tables is sufficient. However, to maintain the full accuracy (0.1) of the ephemeral data in the almanac throughout their reduction to altitude and azimuth, more extensive tables or a calculator should be used.

3. Use of Tables.

Step 1. Determine the Greenwich hour angle (GHA) and Declination (Dec) of the body from the almanac. Select an assumed latitude (Lat) of integral degrees nearest to the estimated latitude. Choose an assumed longitude nearest to the estimated longitude such that the local hour angle

$$
L H A=G H A \begin{aligned}
& \text { - west } \\
& + \text { east }
\end{aligned}
$$

has integral degrees.
Step 2. Enter the reduction table with Lat and LHA as arguments. Record the quantities A, B and Z_{1}. Apply the rules for the sign of B and $Z_{1}: B$ is minus if $90^{\circ}<L H A<270^{\circ}: Z_{1}$ has the same sign as B. Set $A^{\circ}=$ nearest whole degree of A and $A^{\prime}=$ minutes part of A. This step may be repeated for all reductions before leaving the latitude opening of the table.
Step 3. Record the declination Dec. Apply the rules for the sign of Dec: Dec is minus if the name of Dec (i.e. N or S) is contrary to latitude. Add B and Dec algebraically to produce F. If F is negative, the object is below the horizon (in sight reduction, this can occur when the objects are close to the horizon). Regard F as positive until step 7. Set $F^{\circ}=$ nearest whole degree of F and $F^{\prime}=$ minutes part of F.

Step 4. Enter the reduction table a second time with A° and F° as arguments and record H, P, and Z_{2}. Set $P^{\circ}=$ nearest whole degree of P and $Z_{2}{ }^{\circ}=$ nearest whole degree of Z_{2}.
Step 5. Enter the auxiliary table with F^{\prime} and P° as arguments to obtain corr ${ }_{1}$ to H for F^{\prime}. Apply the rule for the sign of corr ${ }_{1}$: corr ${ }_{1}$ is minus if $F<90^{\circ}$ and $F^{\prime}>29^{\prime}$ or if $F>90^{\circ}$ and $F^{\prime}<30^{\prime}$, otherwise corr ${ }_{1}$ is plus.
Step 6. Enter the auxiliary table with A^{\prime} and $Z_{2}{ }^{\circ}$ as arguments to obtain corr ${ }_{2}$ to H for A^{\prime}. Apply the rule for the sign of corr $_{2}$: corr 2 is minus if $A^{\prime}<30^{\prime}$, otherwise corr $_{2}$ is plus.
Step 7. Calculate the computed altitude H_{C} as the sum of H, corr ${ }_{1}$ and corr ${ }_{2}$. Apply the rule for the sign of $H_{\mathrm{C}}: H_{\mathrm{C}}$ is minus if F is negative.
Step 8. Apply the rule for the sign of $Z_{2}: Z_{2}$ is minus if $F>90^{\circ}$. If F is negative, replace Z_{2} by $180^{\circ}-Z_{2}$. Set the azimuth angle Z equal to the algebraic sum of Z_{1} and Z_{2} and ignore the resulting sign. Obtain the true azimuth Z_{n} from the rules

For N latitude, if	$L H A>180^{\circ}$	$Z_{\mathrm{n}}=Z$
if	$L H A<180^{\circ}$	$Z_{\mathrm{n}}=360^{\circ}-Z$
For S latitude, if	$L H A>180^{\circ}$	$Z_{\mathrm{n}}=180^{\circ}-Z$
if	$L H A<180^{\circ}$	$Z_{\mathrm{n}}=180^{\circ}+Z$

Observed altitude H_{0} is compared with H_{C} to obtain the altitude difference, which, with Z_{n}, is used to plot the position line.
4. Example. (a) Required the altitude and azimuth of Schedar on 2001 February 5 at UT $06^{\mathrm{h}} 30^{\mathrm{m}}$ from the estimated position 4° east, 53° north.

1. Assumed latitude

$$
\begin{aligned}
& L a t=53^{\circ} \mathrm{N} \\
& G H A=222^{\circ} 50^{\prime} \\
& 4^{\circ} 10^{\prime} \\
& L H A=\frac{227}{}
\end{aligned}
$$

From the almanac
Assumed longitude
Local hour angle
2. Reduction table, 1st entry
$($ Lat, $L H A)=(53,227)$
3. From the almanac

$$
\text { Sum }=B+D e c
$$

4. Reduction table, 2nd entry $\left(A^{\circ}, F^{\circ}\right)=(26,29)$

$$
\begin{array}{llll}
H=25 & 50 & \begin{array}{l}
P^{\circ}=61 \\
\\
\\
Z_{2}=76 \cdot 3
\end{array}
\end{array}
$$

5. Auxiliary table, 1st entry
$\left(F^{\prime}, P^{\circ}\right)=(21,61)$
Sum

$$
\text { corr }_{1}=\frac{+18}{26 \quad 08}
$$

$$
F<90^{\circ}, F^{\prime}<29^{\prime}
$$

6. Auxiliary table, 2nd entry

$$
\left(A^{\prime}, Z_{2}{ }^{\circ}\right)=(7,76)
$$

corr $_{2}=$ \qquad

$$
A^{\prime}<30^{\prime}
$$

7. $\mathrm{Sum}=$ computed altitude $\quad H_{\mathrm{C}}=\overline{+26^{\circ} 06^{\prime}}$
8. Azimuth, first component

$$
\begin{array}{lr}
Z_{1}=-49 \cdot 4 & \text { same sign as } B \\
Z_{2}=+76 \cdot 3 & F<90^{\circ}, F>0^{\circ}
\end{array}
$$

Sum = azimuth angle

$$
Z=26.9
$$

True azimuth

$$
Z_{\mathrm{n}}=027^{\circ}
$$

$$
\mathrm{N} \text { Lat, } L H A>180^{\circ}
$$

$$
\begin{aligned}
& A=2607 A^{\circ}=26, A^{\prime}=7 \\
& B=-27 \quad 12 \quad Z_{1}=-49 \cdot 4, \quad 90^{\circ}<L H A<270^{\circ} \\
& D e c=\begin{array}{ll}
+56 & 33 \\
\text { Lat and Dec same }
\end{array} \\
& F=+29 \quad 21 \quad F^{\circ}=29, F^{\prime}=21
\end{aligned}
$$

USE OF CONCISE SIGHT REDUCTION TABLES (continued)

4. Example. (b) Required the altitude and azimuth of Vega on 2001 July 29 at UT $04^{\mathrm{h}} 50^{\mathrm{m}}$ from the estimated position 152° west, 15° south.
5. Assumed latitude

From the almanac Assumed longitude Local hour angle

$$
\begin{aligned}
L a t & =15^{\circ} \mathrm{S} \\
G H A & =100^{\circ} 10^{\prime} \\
L H A & =\frac{152^{\circ} 10^{\prime}}{308} \mathrm{~W}
\end{aligned}
$$

2. Reduction table, 1st entry
$($ Lat,$L H A)=(15,308)$

$$
B=+66 \quad 29 \quad Z_{1}=+71 \cdot 7, \quad L H A>270^{\circ}
$$

3. From the almanac

$$
\begin{array}{rlll}
A=49 & 34 & & A^{\circ}=50, A^{\prime}=34 \\
B=+66 & 29 & & Z_{1}=+71 \cdot 7 \\
D e c & =-38 & 47 \\
F & =+27 & 42 & \\
F^{\circ}=28, F^{\prime}=42
\end{array}
$$

$$
D e c=-38 \quad 47 \quad \text { Lat and Dec contrary }
$$

Sum $=B+D e c$
4. Reduction table, 2nd entry
$\left(A^{\circ}, F^{\circ}\right)=(50,28)$
5. Auxiliary table, 1 st entry
$\left(F^{\prime}, P^{\circ}\right)=(42,37) \quad \operatorname{corr}_{1}=\frac{-11}{17 \quad 23}$
Sum
6. Auxiliary table, 2nd entry
$\left(A^{\prime}, Z_{2}^{\circ}\right)=(34,68) \quad$ corr $_{2}=\quad+10$

$$
A^{\prime}>30^{\prime}
$$

7. Sum $=$ computed altitude $\quad H_{\mathrm{c}}=+17^{\circ} 33^{\prime}$

$$
F>0^{\circ}
$$

8. Azimuth, first component

$$
Z_{1}=+71 \cdot 7
$$

same sign as B
second component
$Z_{2}=+67 \cdot 8$ $Z=139 \cdot 5$
Sum = azimuth angle

$$
Z_{\mathrm{n}}=041^{\circ}
$$

$$
\text { S Lat, LHA > } 180^{\circ}
$$

NN		
$\Phi_{\underline{\prime}}$		
응		

Lat．／A	6			$7{ }^{\circ}$			8°			9°			10°			11°			Lat．／A	
A／F	A／		12			z_{1} / z_{2}			$\mathrm{z}_{1} / 2$											
$45 \quad 135$	$44^{\circ} 41^{\prime}$	8133	． 0	4434	8009	83.1	4427	7846	82.1	4418	7722	81.1	4408	7600	． 1	4357	7438	． 2	25	15
46	4541	8124	83.8	4534	7959	82.8	4526	7834	81.8	4516	7709	80.8	4506	7545	79.8	4455	7422	78.8	226	14
47133	4640	8114	83.6	4633	7948	82.6	4624	7821	81.5	4615	7656	80.5	4604	7530	79.5	4553	7405	78.4	227	13
48132	47	8104	83.4	4732	7936	82.3	47	78	81.2	47	7641	80.1	4703	7514	79.1	4651	7348	78.0	228	${ }^{312}$
49131	48	8054	83.1	4831	7924	82.0	4822	7755	80.9	48	7626	79.8	480	7457	78.7	4748	7330	77.6	229	311
50130	49	80	82.9	49	79	81.7	4920	7740	80.6	49	7609	79.4	48	7440	78.3	4846	7310	77.2	230	310
$51 \quad 129$	50	8031	82.6	50	7858	81.4	50	77	80.2	5008	7552	79.1	4956	7421	77.9	43	7250	76.7	31	09
52 128 53	5136	8019	88.4	51	7843	81.1		7708	79.9			78.7	5152	7401	77.5	55040	7229	${ }^{76.3}$		${ }_{307} 308$
			81.8		78	80.5	53	7633	79.2	5302	7455	77.8	5	7318	76.6		7142	75.3	234	306
12									78.8			77						8	25	05
56	5532	7921	81.2		7737	79.8	5511	7554	78.3	8	11	76.9			75.6					
$57 \quad 123$	56	7905	80.9	56	7718	79.4	5609	7532	77.9	5556	7347	76.5	5541	7204	75.0	5525	7022	73.6	237	303
122	57	7847	80.5	57	7657	79.0	5707	7509	77.4	56	7322	75.9		7136	74.5	56	6951	73.0	38	22
						78.5		74	77.0											1
																		71.7		0
																				9
62118			78.9		7521	77.1			75.3			73.6						70.3	24	98
63117	62	7658	． 4	6210	7452	76.5	61	72	74.7	6139	46	72.9	6120	46	2	6100	6649		43	97
										63	6927	71.2		67	69.6	62	65	${ }_{67}^{68.6}$	244	
11			77.4		7312	75.4	6447	7056	73.4	6428	6843	70.6	6407	6634	68.7			8	46	294
113		74	762		72	740		70	718	6523	67	69.			678					
68112						73.2			71.0			68.8								292
69111				6755	7105		67												249	291
70110	69	72	74.0	6851	7015	71.5	6831	6740	69.1	68	6509	66.7		6244	64.5		6023	． 3		90
						70						65.6								
						69														88
			71			68		64	65.5											8
106	72	6908	70	72	6559	． 0	7209	62	64.1	71	60	61.4	7112	5724	58.8		5448	56.4	254	86
75105	7352	6754	68.7		6437	65.5	7303	61					7202					． 5	555	85
76104	74	66	67.3	74	6305	64.0	7355	5951	60.8	7324	56	57.9	72		55.1		5113	． 6	56	84
17					¢	62.2			58.8			55.9								
78			6			60.			56.8			5			50		4656	A		82
			59			57.9			54.		50	51.2			48.4	7411	${ }_{41}^{44} 4$	427	250	280
80100			59.3			55.3		510	51.7											
819																				79
						49.			45.4		41	41								77
8397		49	49		444	45.2			41.4	78					35.3					776
96	81	445	45			40.8														76
35												29.2						． 6		75
$86 \quad 94$	82	3334	33.8	815	2936	29.8	81	2624	26.7	8009	23	24.1	7914	2135	21.9	7818	1944	20.1	66	274
			18.5		1552	16.			14.1			12.6						2． 4	268	771
99	83	926	9.5		805	8.2		705		8057	17		7957	59	5.7	7857		5 2		
－ 90	4400	00	0.0	8300	000	0.0	8200	000	0.0	8100	00	0.0	000	000	0.0	7900	000	0.0	270	270

 －－ロ足界界N

《

NN		
	$\stackrel{\sim}{\sim}$	
	$\bar{\sim}$	
	2	

	졸 	
\%		-
玉		-
-		
\%		
¢		
¢		NN
		第

	部。
$\stackrel{\circ}{2}$	
¢	
ล	
$\stackrel{\circ}{2}$	
$\stackrel{\sim}{2}$	
$\stackrel{4}{\sim}$	

ied	N． －•
$\stackrel{\square}{6}$	
${ }_{8}$	 － ェ・887
岗	 －
$\stackrel{\circ}{\circ}$	
－	
	Nのナー மへ

 N్సీ్సN⿷్స్

ェ` N- © ェ` $\mathfrak{x 8}$

く

。8

NN
31°

Lat / A	36°			37°			38°			39°			40°			41°			Lat. / A	
/	A/H	B/P	z_{1} / z_{2}	A/H.	B/P	$\mathrm{Z}_{1} / \mathrm{z}_{2}$			$z_{1} / 2$			z_{1} / z_{2}			z_{1} / z_{2}			Z_{1}		HA
45°	$3{ }^{\circ}$	4413		$3{ }^{\circ} 23$	$\stackrel{\circ}{4}$	59.0	3352	4209		3320										
46	35	4343	58.7	3504	4240	58.1	3432	4138	57.5	3359	4037	56.9	3326	3937	56.4	32	3838	55.8	226	314
47133	36	4311	57.8	3544	4209	57.2	3512	4107	56.6	3438	4006	56.0	3404	3906	55.4	33	3807	54.9	227	313
48		42	56.9	3624	4136	56.2	3551	4035	55.6	3517	3934	55.0	3442	3834	54.5	340	3735	53	228	312
49	37	4205	55.9	3704	4103	55.3	3630	4001	54.7	3555	3901	54.1	3519	3801	53.5	3443	3703	53.0	229	311
50	3818	4130	55.0	37	4028	54.4	37	3927	53.7	3632	3827	53.1	3556	3727	52.5	3519	3629	52.0	230	310
$\begin{array}{ll}51 & 129\end{array}$	38	40	54.0	38	39	. 4	37		52.8	3709	51	. 1	3632	3652	1.6	5		51.0	231	9
52	39	40	5	39	39	52.4		${ }^{38} 14$	51.8 508	37 46	-37 15		${ }_{37} 378$	${ }_{35} 36$						
12						50.4		36	49.7	38	3558	49		35	48.5	3738	3404	47.9	34	306
125			50			3			487			88			47		33	46.		055
$\begin{array}{ll}55 & 125 \\ 56\end{array}$	4207	3735	48.9	4128	3635	${ }_{48.3}$	4047	3536	47.6	4007	3438	47.0	3926	3341	46.4	38	3245	45.8	236	304
57123	42	3651	47.9	4203	3551	47.2	4122	3453	46.5	4041	3355	45.9	3959	3259	45.3	39		44.7		303
$\begin{array}{ll}58 & 122\end{array}$	43	3606	46.8	4238	3507	46.1	4156	3409	45.4	4114	3312	44.8	4031	3216	44.2	39	3122			302
59121		35	45.6		34	45.0	4229	3324	44.3	4146	3227	43.7	4103	3132	43.1	40	3039	42.5	239	301
6012			44					32	43.			42.5			41.9			13		
								31	42.			41.4						40.2	2	299
118	4535	3252	42.1		3155	41.5		3100	40.8	432	3006	40.2	42		39.6	414	2822	39.0	242	298
117	4607	3200	40.9	4522	3104	40.3	4436	30	39.6	9	17	39.0	03	25	. 4		2735	7.8	243	297
	46	3106	39.7		30		4506	29	38.4		${ }_{27}^{28} 26$	37.8 365			3600			- 35.6	245	295
115	4739	${ }^{3} 211$	37.1	46	2821	36.5	4603	2730	35.9	4514	2640	35.3	4425	25	34.7	4335	04	33.2	246	294
67113		28			2724	35.2			34.6	4540					33.4			32.9		293
68112	4836	2717	.	4746	2626	33.9	46	2537	33.3	46		32.7	45	2403	32.2	4424	2319	31.6	248	292
11		2615	33.1	4813	2526	32.5	4722	2438	31.9	463	2352	31.4	4539	2308	30.8	4448			249	
110	49	2513	31.8	4838	2425	31.2	47	2339	30.6	46	2254	30	46	22	29	4510	,	. 7	250	90
71109			30.4					22			21									
7210								21	27.8			27								
107		21	27		21	26		20	26.4		19	25.9								37
$74 \quad 106$	51	20	26.0	5009	20	. 5	4915	1926	25.0	48	18	24.5	4725	181	24.0	4630	1736	. 6	254	286
105	5124	1936	24.5	5029	1857	24.0	49	1820	23.5		1743	23.1		1709	22.6	4648	1635	22.2	55	285
76			23.4			22.5	50	17	22	48	1638	21.6	48	16						
77 10		155	21.4		15	195	50	14	12.6					1355	183		1327	0		282
02		1558	19.9		14	179			17.5		1316	172			\%		1223	. 6.	59	281
80	5249	1327	16.7	5152	1259	16.3	50	1232	16.0	4956	1206	15.7	4858	1142	15.3	4801	1118	15.0	260	280
8199			15.1			14.7		1119		5008	1056									
8298	53	1051	13.4	52	1028	13.1	5118	1006	12.9	5019	945	12.6	4920		12.3	4822		12.1	262	
		931	11.8	5226	911	11.5	5127	85	11.3	50	834	11.0	4930	816	10.8	4831	759	10.6	263	277
			10.1		75	9.9	5136		9.7		721	9.5	49	70	9.3	48	65	9.1	64	76
85 86 86		650 592	6.8	5243 5249	636 517	8.3 6.6	5143 5149	622 506	8.1 6.5	50 54	609 455	7.9	4944	556 445	7.8 6.2	4845	544 435	7.6 6.1	265	275 274
			51																	
92			3.4			3.3			3.2			3.2		223	3.1			3.0	268	272
8991			17		120	17	5159	117	16	5059	4	1.6	4959		1.6	485	109	15	269	271
9090			0.0		000	0.0	5200	000	0.0	5100	000	0.0	5000	000	0.0	49	000	0.0	270	270

NN	
岩	
\%	
\%	

\％	 ェ｀ニダ今
\％	
－	N。
\％	 ゅ．
$\stackrel{\circ}{9}$	 ゅ． 『 ${ }^{\circ}$
$\stackrel{\circ}{\circ}$	
	し゚肴。

$\stackrel{0}{0}$	
\％	
\％	
\％	
$\stackrel{\square}{6}$	
8	

 ェ｀

 『ロ’さす

N	
$\stackrel{\circ}{2}$	
\%	
先	
R	
흑	

	S 	NN $1+$ O+ dim -
		SN
\bigcirc		
¢		
$\stackrel{\otimes}{8}$		
¢		
\% 8		(10
		兂

		NN
R	 	（
\bigcirc	 	－s
in	 	
\％	 	
¢	 	
～	 ェ｀ 	
		第京

N． 0 OOOOO－

SIGHT REDUCTION TABLE

ぁ。 $\sigma \sigma \sigma \infty \infty \infty \infty \infty$

N。O OOO－－－

 ェ・8ニN్ర్

		NN
\%		
\%		$\stackrel{\square}{\square}$
$\stackrel{\square}{\square}$		
¢		
¢		N
\%		
		(

med		
N	\&	
	¢	
	\%	
	¢	N
	\%	
		N
흔		- ${ }^{\text {º }}$ 줄

Lat. / A	84°			85°			86°			87°			88°			89°			Lat. / A	
LHA/F	A/H	B/P	z_{1} / z_{2}	A/H	B/P	z_{1} / z_{2}	A/H	B/P	z_{1} / z_{2}		B/P	z_{1} / z_{2}		B/P	z_{1} / z_{2}			z_{1} / z_{2}		HA
$4{ }^{\circ} 135{ }^{\circ}$	${ }^{\circ} 14{ }^{\prime}$	415	45.2	${ }_{3}{ }^{\circ} 32$	332	45.1	250	250	45.1	207	207	45.0	125	125	45.0	042	042	45.0	225	315
46	419	411	44.2	${ }^{3} 36$	329	44.1	253	24	44.1	209	205	44.0	126	123	44.0	043	042		${ }^{226}$	314
471133	423	406	43.2	339	325	43.1	255	244	43.1	212	203	43.0	128	122	43.0	044	041	43.0	227	313
48132	427	401	42.2	343	321	42.1	258	241	42.1	214	201	42.0	129	120	42.0	04	040	42.0	${ }^{228}$	312
49	431	357	41.2	${ }^{3} 46$	317	41.1	301	238	41.1	216	158	41.0	131	119	41.0	045	039	41.0	229	11
50130	436	352	40.2	350	313	40.1	304	234	40.1	218	156	40.0	132	117	40.0	046	039	40.0	230	310
129	440	347	39.2	353	309	39.1	30	231	39	220	153	39.0	133	116	39.0	047	038	39.0	231	309
128	443	342	38.2	356	3	38.1	309		38.1	222	151	38.0	135	114	${ }^{38.0}$	047	037	${ }^{38.0}$	${ }^{232}$	308
127	447	337	37.2	359	301	37.1	312	225	37.1			37.0	136	112	37.0	048	036	37.0	233	307
1	451		36.1	403	257	36.1	314	221	36.1	226	146	36.0	13	11		049	035	36.0	${ }^{234}$	306
55125	455	327		406			317				143	35.0		109		049		35.0	235	305
56124	458	322	34.1	409	24	34.1	319	214	34.1	229	41	34.0	139	107	34.0	050	034	34.0	236	304
57123	502	317	33.1	412	244	33.1	321	211	33.1	231	138	33.0	141	105	33.0	050	033	${ }_{33}^{33.0}$	237	303
588122	505	3	32.1	414		32.1	323	207	32.1	233	135	32.0	142	104	${ }^{32.0}$	051	032	32.0	${ }^{238}$	${ }^{302}$
59121	508	306	31.1	417	235	31.1	326	204	31.1	234	133	31.0	143	102	31.0	051	031	31.0	${ }^{239}$	301
60120	512	300	30.1	420	230	30.1	328	200	30.1	236	130	30.0	144	100	30.0	05	030	30.0	240	300
61119	515	255	29.1	422	226	29.1	${ }^{3} 30$	156	29.1	237	127	29.0	145	058	29.0	05	029	29.0	212	299
62118	518	249	28.1	425	221	28.1	332	153	28.1	239	125	28.0	146	056	28.0	053	028	28.0	242	298
117	5	244	27.1	427	216	27.1	334					27.0	147	054	27.0	053	027	27.0	243	297
116	5	238	26.1	430	212	26.1	336	145	26.1	242	119	26.0	148	053	26.0	054	026	26.0	244	
65115	526	233	25.1	432	207	25.	337	1	25.1	243	116	25.0	149	051	25.0	05	025	25.0	245	295
114	529	227	24.1	434	202	2.	3		24	24	113	24.0	150	049	24.0	05	024	24.0	24	294
113	531	221						134		246			150	047		055				93
112	534	215	22.1	438	153	22.1	342	130	22.0	247	107	22.0	151	045	22.0	05	022	22.0	248	92
69 70 711 110	${ }_{5}^{536}$	209	21.1	440	148	21.1	344	126	21.0	248	105	21.0	${ }_{152}^{52}$	043	21.0	056	022	21.0	249	291
70 7110 71 709		204	20	442	143	20.1	- 346	122	20.0	249	102	20.0	${ }_{153}^{55}$	- 41	20.0	${ }^{0} 56$	021			
109	540 542	15	18.	444 445	138 13	19.1 18.1	347 348 3	1118	19.0	250	-59	19.0	154	- 37	19.0	057 057	- 19	19.0	25	288
107	544	146	17.1	447	128	17.1	349	110	17.0	252	053	17.0	55	035	17.0	057	018	17.0	25	87
106	546	140	16.1	448	123	16.1	351	106	16.0	253	050	16.0	155	033	16.0	058	017	16.0	254	286
105	548	133	15.1	450	118	15.1	35	102		254		15.0	156	031	15.0	058	016	15.0	255	
76104		1	14.1	45	113	14.1	353	05	14.0	255	044	14.0	156	02	14.0	05	015	14.0	256	
77103	5	1	13.1	4	108	13.0	${ }^{3} 54$	05	13.0	255	041	13.0	157	027	13.0	05	01	13.0	25	283
88102	5	1	12.1	453	103	12.0	355	05	12.	25	0	12.0	15	02	12.0	05	01	12.0		82
79 80 80 100	+553	$1 \begin{aligned} & 109 \\ & 103\end{aligned}$	11.1	454 455	057 052	11.0	- 356	046	11.0	257	O34	11.0	${ }_{1}^{158}$	223	11.0	- 59	011	11.0	260	281
100	555	103	10.1	455	052	10.0	356	042	10.0	257	031	10.0	15		10.0	059	010	10.0	260	
99	556	057	9.0	456	047	9.0	357	038		258	028					059	009		261	279
$\begin{array}{ll}82 & 98 \\ 83\end{array}$	556 55	-	${ }_{70} 8$	${ }_{4}^{457}$	042 037	8.0	${ }_{358}{ }^{358}$	093 098	78.0	259	022	8.0	159	O 115	7.0	100	007	7.0	${ }^{263}$	277
8496	558	038	6.0	458	031	6.0	359	025	6.0	259	019	6.0	159	013	6.0	100	006	6.0	26	276
3595	559	031	5.0	459	026	5.0	359	021	5.0	259	016	5.0	200	010	5.0	100	005	5.0	265	275
36	559	025	4.0	459	021	4.0	359	017	4.0	300	013	4.0	200	008	4.0	100	004	4.0	266	274
3793	600	019			016								200						267	
92			2.0	500	010	2.0	400	008	2.0	300	006	2.0	200	004	2.0	100	002	2.0	268	272
91			1.0	500	005	1.0	40	004	1.0		003	1.0			1.0	100	01	1.0		71
90	600	000	0.0	500	000	0.0	40	000	0.0	300	000	0.0	200	00	0.0	10	000	0.0		270

NN
$N+$
$1+$ O웅 둔 NN

11.11 Sight Reduction with the NAO Tables

Starting in 1989, there was a significant change in the available tables for celestial navigation. As we have learned so far, the tables required are an almanac and a set of sight reduction tables. In the past sight reduction (SR) tables were usually chosen from Pub 249 (most popular with yachtsmen) and Pub 229 which is required on USCG license exams. The latter have more precision, but this extra precision would rarely affect the final accuracy of a celestial fix. Pub 229 is much heavier, more expensive, and slightly more difficult to use. These notes use Pub 249, up to this point.

As of 1989, the Nautical Almanac Office (NAO) began to include a set of sight reduction tables in the back of the Nautical Almanac. Now when you buy an almanac, you get a set of sight reduction tables with it, even if you don't intent to use these tables. As always, the almanac data must be replaced each new year with a new almanac, but the SR tables they include each year will be the same. Like all standard SR tables, these are not dated and can be used for sights from any year.

The new tables (which I think will come to be called the "NAO Tables") are very short, but they will reduce any sight and provide the same Hc precision as the Pub 249 tables (0.5^{\prime}, rounded to nearest 1^{\prime}) and the same azimuth precision $\left(0.05^{\circ}\right.$, rounded to nearest 0.1^{\prime}) as the Pub 229 tables. The price we pay, however, for a "free" set of concise tables is the amount of work necessary to get the numbers out of them.

All SR tables start with Lat, LHA, and dec and end up with Hc and Zn. With Pub 249, the answer is obtained in two steps. With Pub 229, it takes 3 steps, sometimes 4, and with the new NAO tables it always takes 4 steps with some adding and subtracting between the steps.

At first glance, the new tables are awkward to use and not an attractive alternative to Pub 249. There are several reasons, however, to not rule them out too quickly. First, they will always be there. As of 1989, everyone has them, like it or not. Second, celestial itself is a back-up navigation method to most sailors these days. Most rely on GPS, only using celestial to test it or to replace it if it fails. The sailors who rely on celestial daily, on the other hand, usually do not use tables at all, but instead do all the paperwork with a calculator. In short, traditional navigation using tables is becoming less and less common. Since we are not using tables often, it is not so bad that the tables take a bit longer to use.

In short, if we take the time to learn these new tables and are comfortable with the knowledge that we can use them if we need to, we can save space
money and complexity in the long run by not having to bother with various sources of tables. With this in mind, we have developed a work form that makes the use of these tables considerably easier than just following the instructions given in the almanac. With the use of our workform, the NAO tables do not take much longer than Pub 249 does for this step of the work. Naturally, the first few times go slowly, but after a few examples it becomes automatic and easy. The form guides you through the steps.

We have included here a few of the earlier examples, redone using the new tables. Try a few if you care to see how it goes. As time permits, we will include more examples, with emphasis on unusual cases, such as very low or very high sights.

A Bit of History

The NAO tables were invented by Admiral Davies, and they were originally published as the Concise Tables for Sight Reduction by Cornell Press. We referred to them in our notes as "Davies Tables" and we had a form for their use-now outdated. The original publication of the tables had awkward sign rules and a few minor errors. Forerunners of these tables were the Ageton tables (Pub 211) and the Dreisenstock tables (Pub 208). The Ageton Tables are included in Bowditch, Vol 2 (editions prior to 1985) but these were not included in later edtions, perhaps because they are now in the Nautical Almanac. Both Ageton and Dreisenstock are outdated now. The Power Squadron courses on celestial switched to the new NAO tables shortly after they were published.

Workform for NAO Sight Reduction Tables included in the Nautical Almanac

Short Instructions

1 In row 1, record assumed Lat, LHA, and Dec (D). Mark the signs of D, B, and Z_{1}.

2 In row 1, with Lat and LHA, enter Sight Reduction (SR) Table and record A, B, and Z_{1}.

3 Add D and B to get F, and record it in row 1.

4 Copy A' to row 4 and mark the sign of C_{2}.
5 Round off A to nearest whole degree and record it as A-bar in row 2.

6 Mark the signs of Z_{2} and C_{1} in rows 2 and 3 .
7 Round off F to nearest whole degree and record it as F-bar in row 2.

8 With A-bar and F-bar, enter SR table and record H, P, and Z_{2} in row 2.

9 Round off P and Z_{2} to nearest whole degrees and record them as as P-bar and Z_{2}-bar in rows 3 and 4.

10 With F^{\prime} and P-bar, enter Auxiliary Table (Aux) and record C_{1} in row 3.

11 With A^{\prime} and Z_{2}-bar, enter Aux table and record C_{2} in row 4.

12 Add C_{1} and C_{2} to H to get Hc .
13 Add Z_{1} and Z_{2} to get Z. Copy Z to space below it, rounding to nearest degree. Drop minus sign if present.

14 Convert Z to Zn by chosing appropriate Z sign next to LHA.

15 Record Ho below Hc; take their difference and record it as " a " with the proper label.

Using the NAO Tables

Notes: (1) This procedure is the same as presented in the Almanac, except for a change in notation explained below (2) In the workform, row numbers are marked with white letters in black boxes. (3) For Hs below 1° or above 87°, see special instructions at the end. (4) the angle notation used in the form is illustrated below:

$$
\begin{aligned}
\mathrm{X} & =35^{\circ} 48^{\prime} \quad-\text { an angle } \\
\mathrm{X}^{\circ} & =35^{\circ} \quad-\text { degrees part of } \mathrm{X} \\
\mathrm{X}^{\prime} & =48^{\prime} \quad-\text { minutes part of } \mathrm{X} \\
\mathrm{X} & =36^{\circ} \quad-\mathrm{X} \text { rounded to the nearest whole } \\
\text { degree. } &
\end{aligned}
$$

Step 1. In the top lines of row 1, record assumed Latitude, LHA, and Declination (degrees in D°; minutes in D^{\prime}). Circle the sign (+ or -) of D according to Same or Contrary name-or mark out the sign that does not apply.
Step 2. From the rules beside the Z1 box, determine the sign of B and Z1 (depends on LHA) and circle these signs in row 1 of the work form. B and Z1 have the same sign.
Step 3. With LAT and LHA, enter the main Sight Reduction (SR) Table and record A, B, and Z1 in the spaces provided in row 1 , separating degrees and minutes parts. Lat is found at the top of the SR tables; LHA on either side. Note the reminder of this arrangement at the top left of the form. This applies to all table entries.
Step 4. Copy A' to row 4 and circle the sign of C2 according to the size of A^{\prime}.
Step 5. Round off A to the nearest whole degree and record it as A-bar in row 2.
Step 6. Add D and B algebraically to get F and record it in the space provided in row 1 .
Step 7. From the size of F and the notes provided, determine the signs of Z2 and C1 and circle them in rows 2 and 3 .

Step 8. Round off F to the nearest whole degree and record it as F-bar in row 2.
Step 9. With A-bar and F-bar, enter SR table and record H, P, and Z 2 into the spaces provided in row 2.

Step 10. Round off P and Z 2 to nearest whole degrees and record them as as P-bar and Z2-bar in rows 3 and 4.
Step 11. With F^{\prime} and P-bar, enter the Auxiliary Table (Aux) and record C1 in row 3. The Aux table is at the end of the SR table.

Step 12. With A' and Z2-bar, enter the Auxiliary Table and record C2 in row 4.
Step 13. Apply the corrrections C1 and C2 (with their apapropriate signs) to H to get Hc and record it in the space provided.

Step 14. Combine Z1 and Z2 (with their appropriate signs) to get Z and record it in the space provided. The result can be negative or positive (depending on the signs of Z 1 and Z 2), but this resulting sign is to be ignored- Z is to be treated as a positive number when later converting it to Zn .
Step 15. Record Ho in the space provided below Hc, then take their difference and record it as "a" in the space provided. Mark the proper label of the a-value using the rule if Hc is greater than Ho, then the label is "A," otherwise it is "T."

Step 16. Convert Z to Zn using the traditional rules located below the box for Z , and record the result in the space provided.
Step 17. Plot the LOP using the a-value, its label, and Zn

$$
\text { Low-altitude Sights (Hs below } 1^{\circ} \text { or so) }
$$

For Hs values below 1° or so (sights that are usually only taken in desperation when other sights are not available), Ho, Hc, or both can be negative. In these cases, the Hs to Ho conversion must be done carefully, as signs can change as corrections are applied. Also, the above procedure must be modified as follows: in Step 6 if F is negative (can only happen for very low sights), treat it as positive until the final Hc is determined in Step 13. And in Step 9, change Z2 to 180° - Z2 (remembering that the original Z2 has a sign). In Step 13, if F was negative, change Hc to negative.

High-altitude Sights (Hs above 87° or so)
For very high sights, the standard plotting procedure of intersecting two straight LOPs does not provide a reliable fix, because these lines are no longer good approximations to the circles of position measured with the sextant. For high sights, it is best to plot the GP and then swing an arc from this point, using a radius equal to the zenith distance ($90^{\circ}-\mathrm{Ho}$). This arc is then a section of your circle of position.

It is difficult to estimate the errors caused by neglecting this procedure since they depend on the heights of all sights used for the fix. In any event, when a fix is made from data including a high sight, it is best to check this effect. Also, our preliminary study shows that the NAO type of sight reduction table does not provide consistently accurate Zn values for very high sights. We have not analyzed this effect in detail. We have found no Zn problems for heights below 87°.

Workform for NAO Sight Reduction Tables included in the Nautical Almanac

Workform for NAO Sight Reduction Tables included in the Nautical Almanac
Location on table pages
Top

Latitude N(S)	LHA
1445	74

3	$41{ }^{\prime}$	$45^{\bar{P}}$	Aux ---->	same sign as Z_{2} but reverse sign if $\mathrm{F}^{\prime}=30$ to 59	$\pm 13^{C_{1}}$
4	$49^{\text {A }}$	$77^{\bar{Z}_{2}}$	Aux-->	$\begin{aligned} & + \text { if } A^{\prime}=30 \text { to } 59 \\ & - \text { if } A^{\prime}=0 \text { to } 29 \end{aligned}$	$\oplus 2^{\mathrm{C}_{2}}$

$$
\begin{array}{|l|c|c|}
\hline \mathrm{Hc}= & 13 & 35 \\
\hline
\end{array}
$$

 + If LHA $=0$ to 90

- if LHA $=91$ to 269 - if LHA $=91$ to 269
+ if LHA $=270$ to 360

$$
\begin{aligned}
& H C=13^{\circ} 35.1^{1} \\
& Z_{n}=279.1^{\circ}
\end{aligned}
$$

bar top means rounded value 30^{\prime} or 0.5° rounds up

NAO Example \#4

