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Preface 
 
 
 
 Growing up I had always been fascinated by the thought of navigating 
by the stars. However, it instinctively seemed to me an art beyond my total 
understanding. Why, I don’t know other than celestial navigation has always 
had a shroud of mystery surrounding it (no doubt to keep the hands from 
mutiny). Some time in my 40s I began to discard my preconceived notions 
regarding things that required ‘natural’ talent, and thus I began a journey of 
discovery. This book represents my efforts at teaching myself ‘celestial’, 
although it is not comprehensive of all my studies in this field. Like most 
educational endeavors one may sometimes plunge too deeply in seeking arcane 
knowledge and risk losing the interest and attention of the reader. With that in 
mind this book is dedicated simply to removing the cloak of mystery; to teach 
the concepts, some interesting history, the techniques, and computational 
methods using the simple pocket scientific calculator (or better yet make your 
own navigation software). And yes, also how to build your own navigational 
tools. 
 
 My intention is for this to be used as a self-teaching tool for those who 
have a desire to learn celestial from the intuitive, academic, and practical points 
of view. This book should also interest experienced navigators who are tired of 
simply ‘turning the crank’ with tables and would like a better behind-the-scenes 
knowledge. With the prevalence of hand electronic calculators, the traditional 
methods of using sight-reduction tables with pre-computed solutions will 
hardly be mentioned here. I am referring to the typical Hydrographic Office 
methods H.O. 249 and H.O. 229. Rather, the essential background and 
equations to the solutions will be presented such that the reader can calculate 
the answers precisely with a hand calculator and understand the why. You will 
need a scientific calculator, those having trigonometric functions and their 
inverse functions.  Programmable graphing calculators such as the TI-86 and 
TI-89 are excellent for the methods described in the book. To those readers 
familiar with ‘celestial’, they will notice that I have departed the usual norms 
found in celestial navigation texts. I use a consistent sign convention which 
allows me to discard same-name and opposite-name rules. 
 
 

Rodger Farley 2002 
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Variable and Acronym List 
 
Hs  Altitude angle as reported on the sextant scale 
Ha  Apparent altitude angle 
Ho  Observed, or true altitude angle 
Hc  Calculated altitude angle 
IC  Index correction 
SD  Angular semi-diameter of sun or moon 
UL  Upper limb of sun or moon 
LL  Lower limb of sun or moon 
GHA  Greenwich hour angle 
GHAhour Greenwich hour angle as tabulated at a specific integer hour 
DEC  Declination angle 
DEChour Declination angle as tabulated at a specific integer hour 
SHA  Sidereal hour angle 
LHA  Local hour angle 
Zo  Uncorrected azimuth angle 
Zn  Azimuth angle from true north 
v  Hourly variance from the nominal GHA rate, arcmin per hour 
d  Hourly declination rate, arcmin per hour 
heye  Eye height above the water, meters 
CorrDIP Correction for dip of the horizon due to eye height 

Corrv  Correction to the tabular GHA for the variance v 
Corrd  Correction to the tabular declination using rate d 
CorrGHA Correction to the tabular GHA for the minutes and seconds 
CorrALT Correction to the sextant altitude for atmospheric refraction, but 

parallax and semi-diameter are frequently added in 
R  Correction for atmospheric refraction alone 
Doffset  Offset distance using the intercept method, nautical miles 
LAT  Latitude 
LON  Longitude 
LATA  Assumed latitude 
LONA  Assumed longitude 
LATDR Estimated latitude, or dead-reckoning latitude 
LONDR  Estimated longitude, or dead-reckoning longitude 
LOP  Line of position 
LAN  Local apparent noon 
LMT  Local mean time 
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Chapter One  Early Related History 
 
 
Why 360 degrees in a circle? 
 If you were an early astronomer you would have noticed that the stars 
rotate counterclockwise (ccw) about Polaris at the rate of seemingly once per 
day.  And that as the year moved on the constellation’s position would slowly 
crank around as well, once per year ccw.  The planets were mysterious and 
thought to be gods as they roamed around the night sky, only going thru 
certain constellations named the zodiac (in the ecliptic plane).  You would have 
noticed that after ¼ of a year had passed, or ~ 90 days, that the constellation 
had turned ccw about ¼ of a circle.  It would have seemed that the angle of 
rotation per day was 1/90 of a quarter circle.  A degree could be thought of as 
a heavenly angular unit, which is quite a coincidence with the Babylonian base 
60 number system which established the angle of an equilateral triangle as 60º. 

The Egyptians had divided the day into 24 hours, and the 
Mesopotamians further divided the hour into 60 minutes, 60 seconds per 
minute.  It is easy to see the analogy between angle and clock time, since the 
angle was further divided into 60 arcminutes per degree, and 60 arcseconds per 
arcminute.  An arcminute of a great circle on the surface of our planet defined 
the unit of distance; a nautical mile, which = 1.15 statute miles.  By the way, 
mile comes from the Latin milia for 1000 double paces of a Roman soldier. 
 
Size of the Earth 
 In the Near East during the 3rd century BC lived an astronomer-
philosopher by the name of Eratosthenes, who was the director of the Egyptian 
Great Library of Alexandria.  In one of the scroll books he read that on the 
summer solstice June 21 in Syene (south of Alexandria), one could see the sun’s 
reflection at the bottom of deep wells (on tropic of Cancer).  He wondered that 
on the same day in Alexandria, a stick would cast a measurable shadow.  The 
ancient Greeks had hypothesized that the earth was round, and this observation 
by Eratosthenes confirmed the curvature of the Earth.  But how big was it?  On 
June 21 he measured the angle cast by the stick and saw that it was approximately 
1/50th of a full circle (7.2 degrees).  He hired a man to pace out the distance 
between Alexandria and Syene, who reported it was 500 miles.  If 500 miles was 
the arc length for 1/50 of a huge circle, then the Earth’s circumference would be 
50 times longer, or 50 · 500 = 25000 miles.  Simple tools and an enlightened mind 
can produce extraordinary results, considering he was less than 1% off.  
Amazingly a stick can also tell you the length of a year, 1st day of spring and fall 
(and summer and winter too), and the tilt of the earth’s axis.  Think about it.  
How would you do it? 
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Calendar 
 Very early calendars were based on the lunar month, 29 ½ days.  This 
produced a 12-month year with only 354 days.  Unfortunately, this would ‘drift’ 
the seasons backwards 11 ¼ days every year according to the old lunar 
calendars.  Julius Caesar abolished the lunar year, used instead the position of 
the sun and fixed the true year at 365 ¼ days, and decreed a leap day every 4 
years to make up for the ¼ day loss per Julian year of 365 days.  Their 
astronomy was not accurate enough to know that a tropical year is 365.2424 
days long; 11 minutes and 14 seconds shorter than 365 ¼ days.  This difference 
adds a day every 128.2 years, so in 1582 the Gregorian calendar was instituted 
in which 10 days that particular October were dropped to resynchronize the 
calendar with the seasons, and 3 leap year days would not be counted every 400 
years to maintain synchronicity. 
 
Early Navigation 
 The easiest form of navigating was to never leave sight of the coast.  
Species of fish and birds, and the color and temperature of the water gave 
clues, as well as the composition of the bottom.  When one neared the entrance 
to the Nile on the Mediterranean, the bottom became rich black, indicating that 
you should turn south.  Why venture out into the deep blue water?  Because of 
coastal pirates, and storms that pitch your boat onto a rocky coast.  Presumably 
also to take a shorter route.  One could follow flights of birds to cross the 
Atlantic, from Europe to Iceland to Greenland to Newfoundland.  In the 
Pacific, one could follow birds and know that a stationary cloud on the horizon 
meant an island under it.  Polynesian navigators could also read the swells and 
waves, determine in which direction land would lie due to the interference in 
the wave patterns produced by a land mass. 
 And then there are the stars; one in particular, the north pole star 
Polaris.  For any given port city, Polaris would always be more or less at a 
constant altitude angle above the horizon all year at any hour.  Latitude hooks, 
the kamal, and the astrolabe are ancient tools that allowed one to measure the 
altitude of the Pole Star.  So long as your last stage of sailing was due east or 
west, you could get back home if Polaris was at the same altitude angle as when 
you left.  If you knew the altitude angle of Polaris for your destination, you 
could sail north or south to pick up the correct Polaris altitude, then ‘run down 
the latitude’ until you arrive at the destination (interestingly Polaris was not 
always the Pole Star).  Determining longitude would remain a mystery for many 
ages until accurate clocks could be made.  Techniques used in surveying were 
adopted for use in navigation, two of which are illustrated on the next page. 
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‘Running down the latitude’ from home to destination, changing latitude where safe to pick up 
trade winds    
 
 

Surveying techniques with absolute angles and relative angles 



9 
 

Chapter Two  Review of Fundamentals 
 
 
Orbits 
 The Earth’s orbit about the Sun is a slightly elliptical one, with a mean 
distance from the Sun equal to 1 AU (AU = Astronomical Unit = 149,597,870. 
km).  This means that the Earth is sometimes a little closer and sometimes a 
little farther away from the Sun than 1 AU.  When it’s closer, it is like going 
downhill where the Earth travels a little faster thru its orbital path. When it’s 
farther away, it is like going uphill where the Earth travels a little slower.  If the 
Earth’s orbit were perfectly circular, and was not perturbed by any other body 
(such as the Moon, Venus, Mars, or Jupiter), in which case the orbital velocity 
would be unvarying and it could act like a perfect clock.  This brings us to the 
next topic… 
 
 
 
Mean Sun 
 The mean Sun is a fictional Sun, the position of the Sun in the sky if the 
Earth’s axis was not tilted and its orbit were truly circular.  We base our clocks 
on the mean Sun, and so the mean Sun 
is another way of saying the year-
averaged 24 hour clock time.  This leads 
to the situation where the true Sun is up 
to 16 minutes too fast or 14 minutes too 
slow from clock reckoning.  This time 
difference between the mean Sun and 
true Sun is known as the Equation of 
Time. The Equation of Time at local 
noon is noted in the Nautical Almanac 
for each day.  For several months at a 
time, local noon of the true Sun will be 
faster or slower than clock noon due to 
the combined effects of Earth’s orbital 
eccentricity and orbital velocity.  When 
we graph the Equation of Time in 
combination with the Sun’s declination 
angle, we produce a shape known as the 
Analemma.  The definition and 
significance of solar declination will be 
explained in a later section. 
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Time 
 With a sundial to tell us local noon, and the equation of time to tell us 
the difference between solar and mean noon, a simple clock could always be 
reset daily.  We think we know what we mean when we speak of time, but how 
to measure it?  If we use the Earth as a clock, we could set up a fixed telescope 
pointing at the sky due south with a vertical hair line in the eyepiece and pick a 
guide star that will pass across the hairline.  After 23.93 hours (a sidereal day, 
more later) from when the guide star first crossed the hairline, the star will pass 
again which indicates that the earth has made a complete revolution in inertial 
space.  Mechanical clocks could be reset daily according to observations of 
these guide stars.  A small problem with this reasonable approach is that the 
Earth’s spin rate is not completely steady, nor is the direction of the Earth’s 
spin axis.  It was hard to measure, as the Earth was our best clock, until atomic 
clocks showed that the Earth’s rate of rotation is gradually slowing down due 
mainly to tidal friction, which is a means of momentum transference between 
the Moon and Earth.  Thus we keep fiddling with the definition of time to fit 
our observations of the heavens.  But orbital calculations for planets and lunar 
positions (ephemeris) must be based on an unvarying absolute time scale.  This 
time scale that astronomers use is called Ephemeris Time.  Einstein of course 
disagrees with an absolute time scale, but it is relative to Earth’s orbital speed. 
 
Time Standards for Celestial Navigation 
 Universal Time (UT, solar mean time, GMT) 
This standard keeps and resets time according to the mean motion of the Sun 
across the sky over Greenwich England, the prime meridian, (also known as 
Greenwich Mean Time GMT). UT is noted on a 24-hour scale, like military 
time.  The data in the nautical almanac is based on UT. 
 
Universal Time Coordinated (UTC) 
 This is the basis of short wave radio broadcasts from WWV in Fort 
Collins Colorado and WWVH in Hawaii (2.5, 5,10,15, 20 MHz).  It is also on a 
24-hour scale.  It is synchronized with International Atomic Time, but can be 
an integral number of seconds off in order to be coordinated with UT such 
that it is no more than 0.9 seconds different from UT.  Initial calibration errors 
when the atomic second was being defined in the late 1950’s, along with the 
gradual slowing of the Earth’s rotation, we find ourselves with one more 
second of atomic time per year than a current solar year.  A leap second is 
added usually in the last minute of December or June to be within the 0.9 
seconds of UT.  UTC is the time that you will use for celestial navigation using 
the nautical almanac, even though strictly speaking UT is the proper input to 
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the tables.  The radio time ticks are more accessible, and 0.9 seconds is well 
within reasonable error.   
Sidereal Year, Solar Year, Sidereal Day, Solar Day 
 There are 365.256 solar days in a sidereal year, the Earth’s orbital period 
with respect to an inertially fixed reference axis (fixed in the ‘ether’ of space, or 
in actuality with respect to very distant stars).  But due to the backward 
clockwise precession drift of the equinox (the Earth orbits counterclockwise as 
viewed above the North Pole), our solar year (also referred to as tropical year) 
catches up faster at 365.242 solar days.  We base the calendar on this number as 
it is tied into the seasons.  With 360 degrees in a complete circle, coincidentally 
(or not), that’s approximately 1 degree of orbital motion per day (360 
degrees/365.242 days).  That means inertially the Earth really turns about 361 
degrees every 24 hours in order to catch up with the Sun due to orbital motion.  
That is our common solar (synodic) day of 24 hours.  However, the true inertial 
period of rotation is the time it takes the Earth to spin in 360 degrees using say, 
the fixed stars as a guide clock.  That is a sidereal day, 23.93447 hours (~ 24 x 
360/361).  The position of the stars can be measured as elapsed time from 
when the celestial prime meridian passed, and that number reduced to degrees 
of celestial longitude (SHA) due to the known rotational period of the Earth, a 
sidereal day.  As a side note, this system of sidereal hour angle SHA is the 
negative of what an astronomer uses, which is right ascension (RA). 
 

 
The difference between a Sidereal day and a Solar day 
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Latitude and Longitude 
 I will not say much on this, other than bringing your attention to the 
illustration, which show longitude lines individually, latitude lines individually, 

and the combination of the two.  
This gives us a grid pattern by 
which unique locations can be 
associated to the spherical map 
using a longitude coordinate and 
a latitude coordinate.  The prime 
N-S longitude meridian (the zero 
longitude) has been designated 
as passing thru the old royal 
observatory in Greenwich 
England (established 1884). East 
of Greenwich is positive 
longitude, and west of 
Greenwich is negative longitude.   
North latitude coordinates are 
positive numbers, south latitude 
coordinates are negative.   
 
 
Maps and Charts 
 

 The most common chart type is the modern Mercator projection, which is a 
mathematically modified version of the original cylindrical projection.  On this 
type of chart, for small areas only in the map’s origin, true shapes are preserved, 
a property known as conformality.  Straight line courses plotted on a Mercator 
map have the property of maintaining the same bearing from true north all 
along the line, and is known as a rumb line.  This is a great aid to navigators, as 
the course can be a fixed bearing between waypoints.   
 If you look at a globe and stretch a string from point A to point B, the 
path on the globe is a great circle and it constitutes the shortest distance between 
two points on a sphere.  The unfortunate characteristic of a great circle path is 
that the bearing relative to north changes along the length of the path, most 
annoying.  On a Mercator map, a great circle course will have the appearance of 
an arc, and not look like the shortest distance.  In fact, a rumb line course 
mapped onto a sphere will eventually spiral around like a clock spring until it 
terminates at either the N or S pole, known mathematically as a loxodrome.  
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Chapter Three  Celestial Navigation Concepts 
 
 
 
 There are three common elements to celestial navigation, whether one is 
floating in space, or floating on the ocean.  They are; 1) knowledge of the 
positions of heavenly bodies with respect to time, 2) measurement of the time 
of observation, and 3) angular measurements (altitudes) between heavenly 
objects and a known reference.  The reference can be another heavenly object, 
or in the case of marine navigation, the horizon.  If one only has part of the 
required 3 elements, then only a partial navigational solution will result.  In 3 
dimensions, one will need 3 independent measurements to establish a 3-D 
position fix.  Conveniently, the Earth is more or less a sphere, which allows an 
ingeniously simple technique to be employed. The Earth, being a sphere, means 
we already know one surface that we must be on.  That being the case, all we 
need are 2 measurements to acquire our fixed position on the surface. 
 
Listed below is the stepwise Generalized Celestial Navigation Procedure: 
1) Estimate the current position 
2) Measure altitude angles of identified heavenly bodies 
3) Measure time at observation with a chronometer 
4) Make corrections to measurements 
5) Look up tabulated ephemeris data in the nautical almanac 
6) Employ error-reduction techniques 
7) Employ a calculation algorithm 
8) Map the results, determine the positional fix 

 
The 4 basic tools used are the sextant, chronometer, nautical almanac, and 
calculator (in lieu of pre-calculated tabulated solutions). 
 
In this book and in most celestial navigation texts, altitudes (elevation angle 
above the horizon) of the observed heavenly object s are designated with these 
variables: 
Hs = the raw angle measurement reported by the sextant’s scale. 
Ha = the apparent altitude, when instrument errors and horizon errors are 
accounted for. 
Ho = the true observed altitude, correcting Ha for atmospheric refraction and 
geometric viewing errors (parallax) associated with the heavenly object. 
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THE FOUR BASIC CELESTIAL NAVIGATION TOOLS 
 
 
 

 
 
 

Sextant, Chronometer (time piece), Nautical Almanac, and a Calculator 
 
 
 

Short hand notation for angles 
 

For degrees we use ⁰, and for arc-minutes we use ’ 

For example, 20 degrees 45 arc-minutes is expressed as 20⁰ 45’ 

In decimal degrees that would be 20 + 45/60 = 20.7500⁰
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 Geographical Position (GP) 
 The geographical position of a heavenly object is the spot on the Earth’s 
surface where an observer would see the object directly overhead, the zenith 
point.  You can think of it as where a line connecting the center of the Earth 
and the center of the heavenly object intersects the Earth’s surface.  Since the 
Earth is spinning on its axis, the GP is always changing; even for Polaris since it 
is not exactly on the axis (it is close…) 
 
Circles of Position (COP) 
 Every heavenly object seen from the Earth can be thought of as shining 
a spotlight on the Earth’s surface.  This spotlight, in turn, cast concentric 
circles on the Earth’s surface about the GP.  At a given moment anybody 
anywhere on a particular circle will observe the exact same altitude for the 
object in question.  These are also known as circles of constant altitude. 
For the most part, stars are so far away that their light across the solar system is 
parallel.  The Sun is sufficiently far away that light from any point on the Sun’s 
disk will be more or less parallel across the face of the Earth.  Not so for the 
Moon. 
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Parallax 
 This is a geometrical error that near-by heavenly objects, namely the 
Moon, are guilty of.  Instead of a spotlight of parallel light, a near-by object 
casts more of a conical floodlight. The reason why parallax matters to us is 
because in the nautical almanac, the center-to-center line direction from the 
Earth to the heavenly object is what is tabulated.  The particular cone angle is 
not tabulated, and needs to be calculated and added to the observed altitude to 
make an apples-to-apples comparison to the information in the almanac.  The 
Moon’s parallax can be almost 1 degree, and needs to be accounted for.  The 
parallax can be calculated easily, if we know how far away the heavenly object is 
(which we do).   From the illustration, it should be apparent that the parallax is 
a function of the altitude measurement.  It is a constant number for anyone on 
a particular circle of constant altitude.  The particular parallax angle correction 
corresponding to the particular altitude is known as parallax-in-altitude PA.  The 
maximum parallax possible is when the altitude is equal to zero (moonrise, 
moonset) and is designated as the horizontal parallax HP. 
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Line of Position (LOP) 
 Circles of Position can have radii thousands of miles across, and in the 
small vicinity of our estimated location on the map, the arc looks like a line, 
and so we draw it as a line tangent to the circle of constant altitude.  This line is 
necessarily perpendicular to the azimuth direction of the heavenly object.  One 
could be anywhere (within reason) on that line and measure the same altitude 
to the heavenly object. 
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Navigational Fix 
 To obtain a ‘fix’, a unique latitude and longitude location, we will need 
two heavenly objects to observe.  Reducing the measurements to 2 LOPs, the 
spot where it crosses the 1st line of position is our pin-point location on the 
map, the navigational fix.  This is assuming you are stationary for both 
observations.  If you are underway and moving between observations, then the 
first observation will require a ‘running fix’ correction.  See the illustration of the 
navigational fix to see the two possibilities with overlapping circles of constant 
altitude.  The circles intersect in two places, and the only way to be on both 
circles in the same place is to be on one of the two intersections.  Since we 
know the azimuth directions of the observations, the one true location 
becomes obvious.  Measurement errors of angle and time put a box of 
uncertainty around that pinpoint location, and is called the error box. 
 We could of course measure the same heavenly object twice, but at 
different times of the day to achieve the same end.  This will produce two 
different circles of constant altitude, and where they intersect is the fix, 
providing you stay put.  If you’re not, then running fix corrections can be 
applied here as well.  In fact, this is how navigating with the Sun is done while 
underway with observations in the morning, noon, and afternoon. 
 More often than not, to obtain a reliable fix, the navigator will be using 6 
or more heavenly objects in order to minimize errors.  Stars or planets can be 
mistakenly identified, and if the navigator only has 2 heavenly objects and one 
is a mistake, he/she may find themselves in the middle of New Jersey instead 
of the middle of the Atlantic.  It is improbable that the navigator will 
misidentify the Sun or Moon (one would hope…), but measurement errors still 
need to be minimized.  The two measurements of time and altitude contain 
random errors and systematic errors.  One can also have calculation errors and 
misidentification errors, correction errors, not to mention that you can simply 
read the wrong numbers from the almanac. 
 The random errors in measurement are minimized by taking multiple 
‘shots’ of the same object (~3) at approximately one minute intervals, and 
averaging the results in the hope that the random errors will have averaged out 
to zero.  Systematic errors (constant value errors that are there all the time) 
such as a misaligned sextant, clocks that have drifted off the true time, or 
atmospheric optical effects different from ‘normal’ viewing conditions all need 
to be minimized with proper technique and attention to details, which will be 
discussed later.   Another source of systematic error is your own ‘personal 
error’, your consistent mistaken technique.  Perhaps you are always reading a 
smaller angle, or you are always 1 second slow in the clock reading.  This will 
require a ‘personal correction’. 
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Surfaces of Position (SOP) 
 If you were floating in space, you could measure the angle between the 
Sun and a known star.  There will exist a conical surface with the apex in the 
Sun’s center with the axis of the cone pointing in the star’s direction whereby 
any observer on that conical surface will measure the exact same angle.  This is 
a Surface of Position, where this one measurement tells you only that you are 
somewhere on the surface of this imaginary cone.  Make another measurement 
to a second star, and you get a second cone, which intersects the first one along 
two lines.  Now, the only way to be on both cones at the same time is to be on 
either of those 2 intersection lines.  Make a third measurement between the Sun 
and a planet, and you will create a football shaped Surface of Position, with the 
ends of the football centered on the Sun and the planet (see pg. 8).  This third 
SOP intersects one of the two lines at one point.  That is your position in 3-D. 
 
Notice that if the football shape enlarges to infinity, the end points locally 
resemble cones.  This is what star cones 1&2 actually are.  If you used a third 
star instead of a planet, you would create another pair of intersection lines, one 
of which will be collinear with one of the 1st pair.  It will not get you a point.  
You need to have a nearby object for the final fix.  The football shape is merely 
the circular arc method revolved about an axis to create a 3-D football surface. 
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Celestial Sphere 
 The celestial sphere is our star map.  It is not a physical sphere like the 
Earth’s surface.  It is a construction of convenience.  The stars do have a 3-
dimensional location in space, but for the purposes of navigation we mostly 
need to know only their direction in the sky.  For stars, their distance is so great 
that their dim light across the solar system is more or less parallel.  With that 
thought, we can construct a transparent sphere which is like a giant bubble 
centered over the Earth’s center where the fixed stars are mapped, painting the 
stars, Sun and our solar system planets on the inside of this sphere like a 
planetarium.  We are on the inside of the bubble looking out.  The celestial 
sphere has an equatorial plane and poles just like the Earth.  In fact, we define 
the celestial poles to be an extension of Earth’s poles, and the two equatorial 
planes are virtually the same.  It just does not spin.  It is fixed in space while the 
Earth rotates inside it. 
 
 In our lifetimes, the stars are more or less fixed in inertial space.  Their 
very slow movement is called proper motion.  However, the apparent location of 
a star changes slightly on the star map due to precession and nutation of the 
Earth’s axis, as well as annual aberration.  That is, the Earth’s spin axis does not 
constantly point in the same direction.  We usually think of the North Pole axis 
always pointing at Polaris, the North Star (it’s currently 41’ off from the pole).  
It wiggles (nutates) around it now, but in 10000 years it will point and wiggle 
about Deneb. However, 5000 years ago it pointed at Thuban and was used by 
the ancient Egyptians as the Pole Star!  The Earth wobbles (precession) in a 
cone-like shape just like a spinning top, cycling once every 25800 years.  We 
know the cone angle to be the same as the 23.44 degree tilt angle of the Earth’s 
axis, but even that tilt angle wiggles (nutates) up and down about 0.15 
arcminutes.  There are two periods of nutation, the quickest equal to ½ year 
due to the Sun’s influence, and the slowest (but largest) lasting 18.61 years due 
to the Moon’s precession (wobbling) orbital plane tugging on the earth.   
 
 Aberration is the optical tilting of a star’s apparent position due to the 
relative velocity of the earth vs. the speed of light.  Think of light as a stream of 
particles like rain (photons) speeding along at 299,792 kilometers/s. The Earth 
is traveling at a mean orbital velocity of 29.77 kilometers/s.  When you run in 
the rain, the direction of the rain seems to tilt forward.  The same effect is true 
of light, with the least effect from stars near the ecliptic plane, and the most 
effect from stars with the highest elevation from the ecliptic plane.  This effect 
can be as great as 20.5 arc-seconds (3600 x arcTan(29.77/299792)). 
 
 The ecliptic plane (Earth’s orbital plane at a given reference date, or epoch) 
mapped onto the celestial sphere is where you will also see the constellations of 
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the zodiac mapped. These are the constellations that we see planets traverse 
across in the night sky, and therefore got special attention from the ancients.  
Instead of describing the location of a star on the celestial sphere map with 
longitude and latitude, it is referred to as Sidereal Hour Angle (SHA) and 
declination (DEC) respectively.  Sidereal Hour Angle is a celestial version of 
west longitude, and declination is a celestial version of latitude.  But this map 
needs a reference, a zero point where its celestial prime meridian and celestial 
equator intersect.  That point just happens to be where the Sun is located on 
the celestial sphere during the spring (vernal) equinox, and is known as the Point 
of Aries.  It is the point of intersection between the mean equatorial plane and 
the ecliptic plane.  Since the Earth’s axis wiggles and wobbles, a reference mean 
location for the equatorial plane is used.  Due to precession of the Earth’s axis, 
that point is now in the zodiacal constellation of Pisces, but we say Aries for 
nostalgia.  That point will travel westward to the right towards Aquarius thru 
the zodiac an average of 50.3 arcseconds per year due to the 25800 year 
precession cycle.  Fortunately, all of these slight variations are accounted for in 
the tables of the nautical and astronomical almanacs.  
 
Local Celestial Sphere 
 This is the celestial sphere as referenced by a local observer at the center 
with the true horizon as the equator.  Zenith is straight up, nadir is straight 
down.  The local meridian circle runs from north to zenith to south.  The 
prime vertical circle runs from east to zenith to west. 
 

 
Local celestial sphere for a ground observer 
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Greenwich Hour Angle GHA 
 The Greenwich Hour Angle (GHA) of a heavenly object, is the west 
longitude of that object at a given instant in time relative to the Earth’s prime 
meridian.  The Sun’s GHA is nominally zero at noon over Greenwich, but due 
to the slight eccentricity of Earth’s orbit (mean vs. true sun) it can vary up to 4 
degrees.  GHA can refer to any heavenly object that you are using for 
navigation, including the position of the celestial prime meridian, the point of 
Aries. 

Bird’s-eye view above the North Pole 

 
 

Greenwich Hour Angle of Aries GHAAries (or GHAγγγγ ) 
 The point of Aries is essentially the zero longitude and latitude of the 
celestial sphere where the stars are mapped. The sun, moon, and planets move 
across this map continuously during the year.  SHA and declination relate the 
position of a star in the star map, and GHAAries relates the star map to the 
Earth map. GHAAries is the position of the zero longitude of the star map, 
relative to Greenwich zero longitude, which varies continuously with time 
because of Earth’s rotation.  The relationship for a star is thus: 
 
GHA = GHAAries + SHA   = the Greenwich hour angle of a star.  The 
declination (celestial latitude) of the star needs no ‘translation’ as it remains the 
same in the Earth map as in the star map. 
 

Bird’s-eye view above the North Pole 
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Local Hour Angle LHA 
 The Local Hour Angle (LHA) is the west longitude direction angle of a 
heavenly object relative to a local observer’s longitude (not Greenwich).  This 
leads to the relationship: 
 
 LHA = GHA + East Longitude Observer, or 
 LHA = GHA - West Longitude Observer 
If the calculated value of LHA > 360, then LHA = LHACALCULATED - 360 
 
Bird’s-eye view above the North Pole 
 

When we are speaking of the Sun, a pre-
meridian passage (negative LHA or  
180<LHA < 360) means that it is still 
morning.  A post-meridian passage (positive 
LHA, or 0<LHA<180) means that it is 
literally after noon. 
At exact local noon, LHA = 0 
 

 
Declination DEC 
 As stated earlier, the declination of an object is the celestial version of 
latitude measured on the celestial sphere star-map.  Due to the tilt of the 
Earth’s axis of 23.44 degrees, the sun and planets change their declinations on 
the celestial sphere continuously during the year.  The stars do not except for 
precession and nutation effects.  The Sun’s declination follows nearly a perfect 
sine wave where over the course of 365.24 days it varies northwards 23.44 
degrees and southwards –23.44 degrees.  This is a crucial piece of information 
for the determination of latitude using the Sun. 
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As one can see, maximum declination occurs with the summer solstice which 
has the longest hours of daily sun, the minimum declination with the winter 
solstice having the shortest hours of sun, and the spring and fall equinox 
(“equal night”) having equal day and night times corresponding to zero solar 
declination.  During the equinoxes, the sun will rise directly from the east and 
set directly in the west.  At 40 degrees latitude, there are 6 more hours of 
daylight in the summer as compared to the winter. 
 

 
Solar declination effects seen by an observer on the ground varying seasonally 
 
 
Sign Convention 
 We should digress momentarily to establish the proper signs for 
numbers, which make the mathematics consistent and unambiguous. 
For Declination: North is positive (+) South is negative (-) 
For Latitude:  North is positive (+) South is negative (-) 
For Longitude: East is positive (+)  West is negative (-) 
For GHA, it is a positive number between 0 and 360 degrees westward 
For LHA, it is positive westwards (post meridian passage) 0 <LHA < 180, and 
negative eastwards (pre meridian passage) -180 <LHA < 0, or 180 <LHA < 360 
For observed altitude, Ho, above the horizon is positive (+) 

Also if you are not aware, in an equation A·B means A multiplied by B (AxB).
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Concepts in Latitude 
 The simplest example to illustrate how latitude is determined is to 
consider Polaris, the North Star.  Now Polaris is not exactly on the north 
celestial pole, but close enough for our intuition to work here.  If we were 
sitting on Earth’s north pole (avoiding polar bears), we would observe that 
Polaris would be directly overhead, at the zenith point.  Relative to the horizon, 
it would have an altitude of approximately 90 degrees of angle.  Our latitude at 
the North Pole coincidentally is also 90 degrees.  If now instead we were 
sweating somewhere on the equator on a hill in Ecuador at night, we would see 
Polaris just on the northern horizon.  The altitude relative to the horizon would 
be approximately zero.  Coincidentally, the latitude on the equator is zero.  To 
see why this is not really a coincidence, see the illustration to understand the 
geometry involved.  We could say generally that the observed altitude of Polaris 
is equal to the latitude of the observer (actually small corrections need to be 
made since Polaris is slightly off center from the pole).  Also note that the 
declination of Polaris in the celestial sphere is about 90 degrees.  We can 
generalize the matter by taking into account the declination of any particular 
star, as shown in the illustration.  Such a star can be the Sun, and if we know 
the declination for every hour of the year, we can wait until the Sun is at its 
meridian passage (local apparent noon LAN) to make an altitude measurement 
Ho.  The Latitude is then 90 + DEC - Ho. 
 
In those rare occasions when a celestial object reaches 90 degrees altitude, your 
latitude is equal to the object’s declination at that moment in time.  That is a 
good emergency navigation trick, and sometimes this happens with a noon 
sighting or with stars when the conditions are just right. 
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Concepts in Longitude 
 If we think of a car traveling at 60 mph, in 2 hours it will have traveled 
120 miles (60 · 2).  To determine distance, all we needed was knowledge of the 
speed, and a clock.  For a rotating object, it is the same.  If we know the 
rotational speed, say ¼ revolutions per minute (RPM), and we have a 
stopwatch, in 2 minutes it should have rotated ½ revolution(0.25 · 2), or 180 
degrees(0.25 · 2 · 360 degrees per rev).  Now let’s think of the Earth.  It rotates 
once in 24 hours with respect to the position of the mean Sun in the sky.  
That’s 360 degrees in 24 hours, or 15 degrees per hour (360/24).  If a person 
on the Earth observes the Sun passing across the local N-S meridian line (in 
other words, local noon), and observes the time to be 15:00 UT, that’s 3 hours 
past noon in Greenwich.  You will recall, UT is based on the time in 
Greenwich, zero longitude.  The difference in angle between the observer and 
Greenwich, is 15 deg/hour x 3 hours = 45 degrees of longitude in the 
westward direction.  This is why the chronometer needs to be synchronized 
with Greenwich time, so the observer can determine the difference in angle 
(longitude) with respect to the prime meridian (zero longitude).  This idea was 
noted as early as 1530 by the Flemish professor Gemma Frisius.  Pendulum 
clocks were not suitable for the motion of ships, and it was John Harrison in 
1735 that made the first semi portable clock, with its ‘grasshopper’ escapement 
and twin balance-arm oscillator.  What a contraption!  But, it was the start of 
marine chronometers that could take the rocking and rolling of a ship and not 
lose a beat. 
 It is no coincidence that along a great arc on the Earth (such as the 
equator), one minute of arc (1/60 degree) corresponds to one nautical mile (n 
mi) of distance.  One nautical mile is equal to 1.15 statute miles.  The Earth’s 
circumference is then equal to 21600 n mi (1nm per arcmin x 60 arcmin per 
deg x 360 deg per full circle).  The maximum surface speed of rotation for Sun 
observations will occur along the equator at 15 n mi per minute of time (21600 
n mi per day/(24hr per day x 60 min per hr)).  This is also equivalent to ¼ n mi 
per second of time.  It is easy to see now how a time error (either the clock is 
off or the time is read wrong) can put the longitude determination way off.  In 
mid-latitudes, a time error of 60 seconds will put the longitude off by 10 n mi. 
 You get the general picture, but actually the true position of the Sun 
does not correspond with clock time as we have already described earlier.  It is 
a little off due to Earth’s elliptical orbit.  
 The upshot of all this explanation is that to know longitude, one then 
needs to have a clock set to the time in Greenwich England. 
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Traditional Noon Sighting 
 The noon sighting is an old way of determining latitude and (with 
misgivings) longitude, as the azimuth is unambiguously known as either due 
south or due north.  The method has certain steps to maintain accuracy.  Here, 
the trigonometry disappears and reduces down to mere arithmetic.  The 
technique is to predict approximate local apparent noon (LAN) for your estimated 
longitude from dead reckoning navigation.  Take sightings with your sextant 
several minutes before LAN, and with a sighting every minute, capture the 
highest point in the sky that the Sun traveled plus some sightings after meridian 
passage.  You make corrections to obtain the true altitudes, and plot this 
information as true altitude versus time.  From the plot you can smooth the 
curve and determine the highest point (Honoon) and estimate the time of LAN 
to within several minutes or better of Universal Time (~10-20 n miles of 
longitude error).  Using the nautical almanac, obtain the GHA and declination 
of the Sun (DEC) at the time of LAN.  Remember the sign convention and 
apply it.  We will now make a distinction regarding the direction of meridian 
passage, whether the sun peaked in the south or in the north, by introducing a 
new variable Signnoon.  In keeping with the consistent sign convention, when 
the meridian passage is northwards such as commonly occurs in S. latitudes, 
the value of Signnoon is +1.  When the meridian passage is southwards such as 
commonly occurs in N. latitudes, the value of Signnoon is -1.  Thus: 
 
Latitude =  Signnoon · Honoon + DEC + 90 
 
If this calculated latitude is greater than 90 degrees, then subtract 180 from it. 
If  Signnoon · Honoon + DEC is equal to zero, then you are exactly on either 
the north or south pole.  If you don’t know which pole you’re on then you 
should have stayed home. 
 
This equation works whether you are in the northern or southern hemispheres, 
in or out of the tropics.  Just follow the sign convention, and it will all come out fine. 
 
For longitude, the local hour angle LHA is zero, and so, determine the sun’s 
GHA at the instant of LAN using the almanac: 
Longitude = - GHA  if GHA is less than 180 
Longitude =  360 – GHA  if GHA is greater than 180 
 
Remember, if your chronometer is inaccurate then the longitude will be off 
considerably since you are in essence comparing the local time with time in 
Greenwich.  It will be off considerably anyway due to the plotting estimates.   
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3-Measurement Noon Sighting: Double Altitudes 
 
There is an antiquated technique to determine latitude and longitude with a 
noon sighting using 3 measurements.  15 minutes before LAN, you can shoot 
the sun for a reference point of altitude and time.  Record this as your 
measurement #1.  Then keep track of the sun with the sextant and when it 
reaches the maximum altitude, record this as your measurement #2.  Finally, 
set the sextant to the altitude setting that you had in measurement #1, and 
observe the sun.  The moment the altitude matches the pre-positioned setting, 
record the time (UTC).  Noon will be at the average between time 
measurements #1 and #3.  The latitude will be derived from measurement #2.   
 
From the almanac, determine the sun’s declination DEC.  For southwards 
meridian passage, Signnoon = +1, and a northerly passage = -1. 
 
Latitude =  Signnoon · Ho#2 + DEC + 90 (remember the sign for DEC) 
If this calculated latitude is greater than 90 degrees, then subtract 180 from it. 
 
Time of LAN = (Time #1 + Time #2) *0.5 
 
For longitude, the local hour angle LHA is zero, and so determine the sun’s 
GHA at the instant of LAN using the almanac: 
 
Longitude = - GHA   if GHA is less than 180 
Longitude =  360 – GHA   if GHA is greater than 180 
 
If for example T#1 = 19:27:31, and T#3 = 19:48:43, then the difference 
between them is 21 min and 12 sec.  Half that is 0:10:36 difference, so add that 
to T#1 and you get 19:37:67 which is 19:38:07 as LAN (67 seconds = 1 min+7 
sec).
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Plane Trigonometry 
 
The simplest notion of ‘trig’ is the relationship of the sides and angles in a 
triangle.  All you have to know are these three basic relationships: 

sine (α) = Lo / R  shorthand is sin(α) 
cosine (α) = La / R  shorthand is cos(α) 
tangent (α) = Lo / La shorthand is tan(α) 
 
The values of these trigonometric functions 
can be expressed as an infinite series, which 
your calculator will approximate by truncating 
the series after evaluating only a few terms. 
ArcSin or arcCos is the inverse function.  On 
your calculator it might be ASIN, or InvSIN. 
 

Useful identities: 
sin(α) = cos(90˚- α) 
cos(α) = sin(90˚- α) 
 
Spherical Trigonometry 

Three Great Circles on a sphere will 
intersect to form three inner corner angles 
a, b, c, and three surface angles A, B, C.  
Every intersecting pair of Great Circles is 
the same as having two intersecting planes.  
The angles between the intersecting planes 
are the same as the surface angles on the 
surface of the sphere.  Relationships 
between the corner angles and surface 
angles have been worked out over the 
centuries, with the law of sines and the law 
of cosines (spherical trigonometry) being 
the most relevant to navigation. 

 
Law of Sines:       sin(a)/sin(A) = sin(b)/sin(B) = sin(c)/sin(C)  
 
Law of Cosines:   cos(a) = cos(b) · cos(c) + sin(b) · sin(c) · cos(A) 
 
Law of Cosines in terms of co-angles by using the useful identies: 
sin(90-a) = sin(90-b) · sin(90-c) + cos(90-b) · cos(90-c) · cos(A) 
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The Navigational Triangle 
 The navigational triangle applies spherical trigonometry, in that the inner 
corner angles a, b, c are related to altitude, latitude, and declination angles, and 
the surface angles are related to azimuth and LHA angles. 
 

 
 
The inner corner angles corresponding to the arc sides are modifications of the 
altitude, latitude and declinations.  As can be seen in the drawing the “co-
angles” are 90˚ – the inner corner angle: 
Co-altitude   = 90˚ – H 
Co-declination  = 90˚ – DEC 
Co-latitude   = 90˚ - LAT 
Most authorities will examine 4 cases concerning North or South declination 
and latitude.  But if a consistent sign convention is used, we need only concern 
ourselves with the one picture.  If you substitute a co-altitude (like 90-H) into 
the co-altitude formula (90-a), a = 90-H, so 90-(90-H) = H .  The modified law 
of cosines formula for co-altitudes becomes: 
sin(H) = sin(Lat) · sin(DEC) + cos(Lat) · cos(DEC) · cos(LHA). 
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Chapter Four  Calculations for Line of Position 
 
 The calculated altitude is a way of predicting the altitude of a heavenly 
object by first assuming a latitude and longitude for a hypothetical observer and 
working out the problem backwards.  The math becomes direct and 
unambiguous when done in this manner.  The obvious choice of assumed 
latitude and longitude is the estimated position by dead reckoning.  Dead 
reckoning is the method of advancing from a last known position by knowing 
the direction you headed in, how fast you were going, and how long you went.  
You will eventually compare this calculated altitude to a measured altitude, and 
so the calculated altitude must correspond to the same time as the measured 
altitude.  This is important to extract the proper values of GHA and declination 
from the nautical almanac.  You must be talking about the same instant in time 
for a correct comparison.  Remembering to use the sign convention, the law of 
cosines gives us this relationship for the calculated altitude Hc: 
 
Hc = arcSin[ Sin(LatA) · Sin(DEC)  +  Cos(LatA) · Cos(DEC) · Cos(LHA) ] 
 
Where LatA is the assumed latitude, LonA is the assumed longitude 
 and the calculated local hour angle   LHA =  GHA + LonA 
If  LHA is greater than 360, then subtract 360 from the calculated LHA. 
DEC is of course the declination of the heavenly object. 
 
The uncorrected azimuth angle Zo of a heavenly object can also be calculated 
as thus: 
 
Zo = arcCos[{Sin(DEC) – Sin(LatA) · Sin(Hc)}/{Cos(LatA) · Cos(Hc)}] 
 
 
Corrected azimuth angle Z  (not used in any of the equations here) 
If N. latitudes, then Z = Zo        If S. latitudes, then Z = 180 – Zo 
 
True Azimuth Angle from True North Zn 
If LHA is pre-meridian passage (-, or 180<LHA < 360), Zn = Zo 
If LHA is post-meridian passage (0<LHA < 180), Zn = 360 – Zo  
Post meridian check can also be established if:  Sin(LHA) > 0 
Remember, arcSin or arcCos on your calculator could also be designated as 
ASIN, ACOS, or INVSIN, INVCOS. 
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By using the sign convention, we only have two cases to examine to obtain the 
true azimuth angle.  All texts on celestial that I know of will list 4 cases due to 
the inconsistently applied signs on declination and latitude.  Classical same 
name (N-N, S-S) or opposite name (N-S, S-N) rules do not apply here. 
 
Line of Position by the Marcq Saint-Hilaire Intercept Method 
 This clever technique determines the true line of position from an 
assumed line of position and is the basis of modern sight reduction.  Let’s say you 
measured the altitude of the Sun at a given moment in time.  You look up the 
GHA and declination of the Sun in the nautical almanac corresponding to the 
time of your altitude measurement.  From an assumed position of latitude and 
longitude, you calculate the altitude and azimuth of the Sun according to the 
preceding section and arrive at Hc and Zn.  On your map, you draw a line thru 
the pin-point assumed latitude and longitude, angled perpendicular to the 
azimuth angle.  This is your assumed line of position.  The true line of position 
will be offset from this line either towards the sun or away from it after 
comparing it to the actual observed altitude Ho (the raw sextant measurement is 
Hs, and needs all the appropriate corrections applied to make it an ‘observed 
altitude’). 
 
The offset distance DOFFSET to determine the true line of position is equal to: 
 
DOFFSET = 60 · (Ho - Hc), altitudes Ho and Hc in decimal degrees, or  
DOFFSET = (Ho - Hc), altitudes in minutes of arc. DOFFSET is in nautical miles 
for both cases.  
 
 If DOFFSET is positive, then parallel offset your assumed line of position 
in the azimuth direction towards the heavenly object. If negative, then draw it 
away from the heavenly object.  If the offset is greater than 25 nautical miles, 
you may want to assume a different longitude and latitude to minimize errors.   
 
 By calculating an altitude, you have created one circle of constant 
altitude about the geographical position, knowing that the actual circle of 
constant altitude is concentric to the calculated one.  The difference in 
observed altitude and calculated altitude informs you how much smaller or 
larger the actual circle is.  Offsetting along the radial azimuth line, the true 
circle will cross the azimuth line at the intercept point.  You could also simply 
remember that a higher observed altitude means you are closer to the 
geographical position GP.  If not, you are further away. 
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Line of Position by the Sumner Line Method 
 
 If we measure the altitude of a heavenly object and make all the proper 
corrections, this reduces to the observed altitude Ho.  As we should know by 
now, there is a circle surrounding the geographical position of the heavenly 
object where all observed altitudes have the same value Ho.  We could 
practically draw the entire circle on the map, but why bother?  What if instead, 
we draw a small arc in the vicinity of our dead reckoning position.  In fact, why 
an arc at all, since at the map scale that interest us, a straight line will do just 
fine.  All we need do is to rearrange the equation of calculated altitude, to make 
it the observed altitude instead and to solve the equation for LHA, which will 
give us longitude.  The procedure is to input an assumed latitude, the GHA and 
declination for the time of observation, and out pops a longitude.  Mark 
longitude and latitude on the map.  Now input a slightly different latitude, and 
out pops a slightly different longitude.  Mark the map, connect the dots and 
you have a Sumner Line.  These are two points on the circle in the vicinity of 
your dead reckoning position.  Or were they?  Was the answer for longitude 
unreasonably off?  Notice that for every latitude line that crosses the circle, 
there are 2 solutions for longitude, an east and west solution.  In the arcCos 
function, the answer can be the angle A or the angle -A.  Check both just to 
make sure. 
 
East side of the circle when the object is westwards (post meridian): 
LonC = arcCos[{ Sin(Ho) - Sin(DEC) · Sin(LatA)}/{Cos(LatA) · Cos(DEC)}] – GHA 
 
West side of the circle when the object is eastwards (pre meridian): 
LonC = -arcCos[{ Sin(Ho) - Sin(DEC) · Sin(LatA)}/{Cos(LatA) · Cos(DEC)}] – GHA 
 
Where LatA is the assumed latitude, LonC is the calculated longitude 
 DEC is of course the declination of the heavenly object. 
 
The two values for assumed latitude could be the dead reckoning latitude LatDR 
+ 0.1 and – 0.1 degree. 
 
The advantage to this method is that the LOP comes out directly without 
offsets.  There is no azimuth calculation, just two calculations with the same 
equation having slightly differing latitude arguments.  Also, the fact that only 
the assumed latitude is required means no estimated position of the longitude is 
needed at all.  This method turns into an E-W LOP when near the meridian 
passage, just like a noon shot.
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History of the Sumner Line 
 
The Sumner line of position takes its name from Capt. Thomas H. Sumner, an 
American ship-master, who discovered the technique serendipitously and 
published it.  I recount here his discovery, paraphrased from his book: 

Capt. Sumner sailed from Charleston S.C. on November 25th, 1837, and was 
bound for Greenock, Ireland.  After passing 21 deg west longitude, he had no 
observations due to thick weather until he came close to land.  He was within 
40 miles of the Tuskar lighthouse off the coast of Ireland by dead reckoning 
with the weather getting worse at around midnight December 17th.  At that 
point the wind backed from the south to the south east making the coast a lee 
shore.  He kept close to the wind tacking back and forth until daylight, and 
then kept on a course of ENE.  At about 10 am local time he was able to make 
a sun shot observation, but going so long since the last observation, he was 
unsure of his dead reckoning latitude.  A longitude (Lon1) with his uncertain 
latitude (Lat1) was calculated: 

Lon1 = -arcCos[{ Sin(Ho) - Sin(DEC) · Sin(Lat1)}/{Cos(Lat1) · Cos(DEC)}] – GHA 

Declination and GHA of the sun was from the almanac and the time mark 
from the sun shot.  The longitude was 15’ east of his dead reckoning position.  
He then assumed a second latitude (Lat2) 10’ north of his dead reckoning 
towards the coast: 

Lon2 = -arcCos[{ Sin(Ho) - Sin(DEC) · Sin(Lat2)}/{Cos(Lat2) · Cos(DEC)}] – GHA 

Marking the chart with the location Lat1, Lon1, and then with Lat2, Lon2, he 
noticed the 2nd position was 27 miles ENE of the 1st position 

He did this a 3rd time with another 10’ more northerly latitude assumption and 
calculated a 3rd longitude: 

Lon3 = -arcCos[{ Sin(Ho) - Sin(DEC) · Sin(Lat3)}/{Cos(Lat3) · Cos(DEC)}] – GHA 

After plotting this third point on the chart (Lat3, Lon3), he noticed that all 
three of the points were on a line.  This line just happened to cross Smalls 
Light as well.  Capt. Sumner rightfully concluded that all three points saw the 
same observed altitude of the Sun, and so where he might not know exactly 
where he was, he knew he was somewhere on that line.  Coincidentally his 
course was on that line as well, and he continued to sail ENE; within an hour 
he saw Smalls Light and made his landfall.  Thus the Sumner Line method was 
discovered accidently by practice. 
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Chapter 5  Measuring Altitude with the Sextant 
 
 The sextant is a wonderfully clever precision optical instrument for 
which we can thank Sir Issac Newton for the design.  It reflects the image of 
the Sun (or anything, really) twice with two flat mirrors in order to combine it 
with a straight-thru view, allowing you to see the horizon and heavenly object 
simultaneously in the same pupil image.  This allows for a ‘shake-free’ view, as 
the horizon and Sun move together in the combined image.  The straight-thru 
view is accomplished with the second mirror (horizon mirror), which is really a 
half mirror, silvered on the right and clear on the left.  You see the horizon 
unchanged on the left, and the twice-reflected sun on the right if you use a 
‘traditional’ mirror as opposed to a ‘whole horizon’ mirror.  With a whole horizon 
mirror, both horizon and Sun will be in the entire view.  It does this by partial 
silvering of the entire horizon mirror like some sunglasses are, reflecting some 
light and transmitting the rest.  This makes the easy shots easier, but the more 
difficult shots with poor illumination or star shots more difficult.  Even with 
the traditional mirror, curiously, you will see a whole image of the sun in the 
pupil that you can move to the right or left by rocking the sextant side to side.  
The glass surface itself is reflective.  When it is at its lowest point, you are 
correctly holding the sextant and can take a reading.  The horizon however, will 
only be on the left side of the image.  In order to determine the altitude of the 
Sun, you change the angle of the first mirror (index mirror) with the index arm 
until the Sun is close to the horizon in the pupil image.  Now turn the precision 
index drum (knob) until the lower limb of the Sun just kisses the horizon.  Rock 
it back and forth to make sure you have the lowest reading.  In order not to 
burn your eye out (that would be stupid…), there are filters (shades) that can be 
rotated over the image path of the index mirror.  Likewise, there are other 
filters that cover the horizon mirror to remove the glare and increase the 
contrast between horizon and sky. 
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Mirror Alignments 
Even an expensive precision instrument will give you large errors (although 
consistent systematic error) unless it is adjusted and calibrated.  Before any 
round of measurements are taken, you should get into the habit of calibrating 
and if necessary adjusting the mirrors to minimize the errors.   
 
The first check is to see if the index mirror is perpendicular to the sextant’s arc.  
Known as Perpendicularity Alignment, it is checked in a round-about manner by 
finding the image of the arc in the index mirror when viewed externally at a low 
angle.  Set the arc to about 45 degrees.  The reflected arc in the index mirror 
should be in line with the actual arc.  This can be tricky, as it only works if the 
mirrored surface is exactly along the pivot axis of the index arm.  Since most 
mirrors are secondary surface mirrors (the silvering is on the back of the glass), 
you need to compare the position of the rear of the glass to the pivot axis first 
to see if this technique will work.  First surface mirrors (the silvering is on the 
front of the glass) seem to be an upgrade, but the sextant’s manufacturer may 
not have necessarily redesigned the mirror-holding mount.  This positions the 
index mirror reflecting surface 2 to 3 mm or so in front of the pivot axis.  In 
that case, the reflected image of the arc should be slightly below the viewed 
actual arc.  There are precision-machined cylinders about an inch high that you 
can place on the arc and view their reflections.  The reflections should be 
parallel to the actual cylinders.  If not, then turn the set screw behind the index 
mirror to bring it into perpendicular alignment. 
 
The next alignment is Side Error Alignment of the horizon mirror.  This can be 
done two ways after setting the arc to the zero angle point such that you see the 
same object on the left and right in the pupil image.  First, at sea in the daytime, 
point the sextant at the horizon.  You will see the horizon on the left and the 
reflected horizon on the right.  Adjust the index drum until they are in perfect 
alignment while holding the sextant upright.  Now roll (tilt) the sextant side to 
side.  Is the horizon and reflected image still line-to-line?  If not, then side error 
exists.  This is corrected with adjustments to the set screw that is 
perpendicularly away from the plane of the arc on the horizon mirror.  Second 
method is to wait until nighttime, where a point source that is nearly infinitely 
far away presents itself (yes, I mean a star).  Same procedure as before except 
that you need not roll the sextant.  What you will see is two points of light.  
The horizontal separation is the side error, and the vertical separation is the index 
error.  Adjust the drum knob to negate the index error effect until the star and 
its reflection are vertically line-to-line but still separated horizontally.  Make 
adjustments to the side-error set screw until the points of light converge to a 
single image point. 
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You could stop here at this point, reading the drum to determine the index 
error IE (Note: index correction IC = - IE).  Or you could continue to zero out 
the index error as well with a last series of adjustments.  In which case, for the 
Index Error Alignment, set the arc to zero (index arm and drum to the zero angle 
position).  You will notice that the star image now has two points separated 
vertically.  Adjusting the remaining set screw on the horizon mirror (which is 
near the top of the mirror), you can eliminate the vertical separation.  
Unfortunately this last set screw does not only change the vertical separation, 
but it slightly affects the horizontal separation as well.  Now you need to play 
around with both set screws until you zero-in the two images simultaneously.  
With a little practice these procedures will be easy and routine.  A word of 
caution: the little wrench used to adjust the set screws maybe very difficult to 
replace if you should drop it overboard.  Making a little hand lanyard for the 
wrench will preserve it.  Maybe… 
 
Note:  I have also used high altitude jet aircraft, their contrails, and even cloud 
edges to adjust the mirrors (low accuracy…).  If you have dark enough horizon 
shades, you can even use the sun’s disk to adjust the mirrors. 
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Sighting Techniques 
 
Bringing the object down 
Finding the horizon is much easier than finding the correct heavenly object in 
the finder scope.  So, the best technique is to first set the index arm to zero 
degrees and sight the object by pointing straight at it.  Then keeping it in view, 
‘lower’ it down to the horizon by increasing the angle on the index arm until 
the horizon is in sight.  Careful with the sun, as you don’t want to see it 
unfiltered thru the horizon glass; keep the sun on the right hand side of the 
mirror using the darkest shade over the index mirror. 
 
Rocking for the lowest position 
Rocking the sextant from side to side will help you determine when the sextant 
is being pointed in the right direction and held proper, as the object will find its 
lowest point.  This will give the true sextant altitude Hs. 
 
Letting her rise, letting her set 
Often it is easier to set the sextant ‘ahead’ of where the heavenly object is 
going, and to simply let her rise or set as the case may be to the horizon.  At 
that point you mark the time.  That way you can be rocking the sextant to get 
the true angle without also fiddling with the index drum.  This leaves a hand 
free, sort of, to hold the chronometer such that at the time of mark, you just 
have to glance to the side a little to see the time. 
 
Upper limb, lower limb 
With an object such as the Sun or Moon, you can choose which limb to use, 
the lower limb or upper limb.  Unless the Sun is partially obscured by clouds, 
the lower limb is generally used.  Depending on the phase of the moon, either 
lower limb or upper limb is used. 
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Brief History of Marine Navigational Instruments 
 
The earliest instrument was the astrolabe, constructed in the Middle East during 
the 9th century AD.  It was a mechanical rotating slide rule with a pointer to 
determine the altitude of stars against a protractor.  Contemporary was a very 
simple instrument, the quadrant.  It was a quarter of a circle protractor with a 
plumb-bob and a pair of peep sights to line up with Polaris.  The first real 
ancestor to the modern sextant was the cross staff, described in 1342.  A 
perpendicular sliding cross piece over a straight frame allowed one to line up 
two objects and determine the angle.  Of course one had to look at both 
objects simultaneously by dithering the eyeball back and forth – a bit of a 
problem.  Also one had to look into the blinding sun.  Since a cross staff 
looked like a crossbow, one was said to be ‘shooting the sun’, an expression 
still used today.  The Davis backstaff  in 1594 was an ingenious device where sun 
shots were taken with your back to the sun, using the sun’s shadow over a vane 
to cast a sharp edge (so the navigator wouldn’t go blind!).   The navigator 
would line up the horizon opposite the sun azimuth with a pair of peep holes, 
and rotated a shadow vane on an arc until the shadow edge lined up on the 
forward peep hole.  This limited one to only sun shots to determine latitude.  
In the 1600’s a French soldier-mathematician by the name of Vernier invented 
the vernier scale, whereby one could easily interpolate between degree scales to a 
1/10 or 1/20 between the engraved lines on the protractor scale.  The search 
for determining longitude created bizarre proposals, but it was recognized that 
determining the time was the answer, and so one needed an accurate clock.  A 
clock could be mechanical, or astronomical.  The Moon is about ½ degree of 
arc across its face, and moves across the celestial sphere at the rate of about 
one lunar diameter every hour (~0.5 arcminute per minute of time).  Therefore 
its arc distance to another star could be used as a sort of astronomical clock.  
Tables to do this were first published in 1764.  The calculations and corrections 
are indeed frightening, and this method of determining time to within several 
minutes of Greenwich Mean Time is called doing Lunars, and those who 
practice it are Lunarians.  Undoubtedly if you used this method too often you 
would have been branded a Lunatic.  Fortunately in 1735 John Harrison 
invented the first marine chronometer, having some wood elements and weighing 
125 lbs.  He worked on it for 40 years (until he produced the alarm-clock size 
H4)!  The Hadley Octant  in 1731 was the first to use the double reflecting 
principle as described by Isaac Newton a century before.  It could measure 
across 90 degrees of arc, even though it was only physically 45 degrees arc, an 
1/8 of a circle.  The sextant with it’s ability to record angles of 120 degrees 
came about for use in doing lunars, and so was a contemporary of the octant.  
By 1780, refinements such as tangential screws, vernier scales, and shades 
glasses, fixed the design of sextants and octants for the next 150 years.   
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VARIOUS ANTIQUE INSTRUMENTS 
 
 

 
 
 
Octants, Back Staff, Cross Staff, Quadrant, Astrolabes, Kamal 



46 
 

Chapter 6   Corrections to Measurements 
 
There are numerous corrections to be made with the as-measured altitude Hs 
that you read off of the sextant’s arc degree scale and arc minute drum and 
vernier.  Your zero point on the scale could be off, the same as the bathroom 
scale when you notice that it says you weigh 3 lbs even before you get on it.  
This is known as index error IE, and the correction is IC (IC = -IE).  For our 
example of the bathroom scale, IC = -3.  The other major corrections are 
parallax, semi-diameter, refraction, and dip, listed from the largest effect to 
the smallest.  Lunar parallax can be at most a degree, semi-diameter ¼ degree, 
refraction and dip are on the order of 1/20th degree. 
 

 
 

 
 
Note, the Hs in the figure conveniently does not account for the index error. 
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The sextant basically has an index correction IC and an instrument correction 
I.  The instrument error is due to manufacturing inaccuracies and distortions, 
and should be listed on a calibration sheet from the manufacturer.  Generally 
it’s negligible.  Index error is due to the angular misalignment of the index 
mirror, with respect to the zero point on the scale.  The correction IC is 
negative when the zero is “on the scale”, and positive when “off the scale”.  By 
adjusting the drum knob as described on pages 40 and 41 to negate the optical 
index error, one can see if the zero is on or off the scale. 
 
Dip Correction 
Dip is the angle of the visual horizon, dipping below the true horizon due to 
your eye height above it.  This is also tabulated in the nautical almanac.  An 
approximate equation for dip correction that incorporates a standard horizon 
refraction is thus: 
 
Corr DIP =  - 0.0293 · SquareRoot(heye)           in  Decimal Degrees 
Corr DIP =  - 1.758 · SquareRoot(heye)             in  arc minutes 
Where heye is the eye height above the water, meters. 
Corr DIP is always negative. 
 
Distance to visible horizon as a function of eye height above the water: 

 
 
Altitude Corrections 
Let us first define the apparent altitude, Ha = Hs + IC + Corr DIP 
Ha is the altitude without corrections for refraction, semi-diameter, or parallax.    
The atmosphere bends (refracts) light in a predictable way.  These corrections 
are tabulated on the 1st page of the nautical almanac based on the apparent 
altitude Ha.  The corrections vary for different seasons, and whether you are 
using the lower or upper limb of the Sun for your observations.  Since 
measurements are made to the edge (limb) and not the center of the Sun, the 
angle of the Sun’s visual radius (semi-diameter) must be accounted for.  The 
table also lists slight deviations from the nominal for listed planets. There are 
special lunar correction tables at the end of the almanac, which include the 
effects of lunar semi-diameter, parallax and refraction.  The variable name for 
all of these combined altitude error corrections, lunar, solar or otherwise, is 
Corr ALT, sometimes called the ‘Main Correction’. 
The true observed altitude is a matter of adding up all the corrections: 
 Ho = Ha + Corr ALT 
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Tables of Altitude and Dip Correction, averaged values 
 
For simplified corrections, use these tables instead of the Nautical Almanac. 
 

 
 
 
Graph of Dip Correction, for when land is used as horizon 
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Refinements 
Corrections for observations can be calculated instead of using tables, and 
refinements can be employed for non-standard conditions. 
 
Start with the apparent altitude Ha: 
Ha = Hs +IC + Corr DIP       (assume instrument correction I ~ 0) 
 
The horizontal parallax for the Moon is given in the nautical almanac tables as 
the variable HP in minutes of arc, and you must convert it to decimal degrees.   
HP for the Sun = 0.0024 degrees, but this is rarely included as being so small a 
value.  For Venus, the HP is hidden in the altitude correction tables, listed as 
‘Additional Corrn ’.  Use the largest number at zero altitude to = HPVenus.  To 
determine the parallax-in-altitude PA, use this equation: 
 
PA = HP · Cos(Ha) · (1 –(Sin2(Lat))/298.25) includes earth oblateness 
 
The semi-diameter of the Sun SD is given at the bottom of the page of the 
tables in the nautical almanac in minutes of arc, and you must convert it to 
decimal degrees.  So is the semi-diameter daily average of the Moon, but you 
can calculate one based on the hourly value of HP: 
The semi-diameter of the Moon: SD = 0.2724 · HP · (1 + Sin(Ha)/60.5) 
The terms in the parenthesis are “augmentation”, meaning the observer is a 
very little closer to the moon with greater altitude angle.  This is a small term. 
 
Atmospheric refraction is standardized to surface conditions of 10 deg C and 
1010mb pressure.  This standard refraction correction Ro is thus: 
Ro = - 0.0167 / Tan[Ha + 7.31/(Ha+4.4)] degrees 
 
The correction for non-standard atmospheric conditions is referred to as f: 
f = 0.28 · Pressuremb / (TemperatureDEG C + 273) 
The final refraction correction  R is thus: 
R = Ro · f    This number is always negative. 
 
If the lower limb were observed, then signlimb = +1  
If the upper limb were observed, then signlimb = -1 
 
Observed altitude with refinements:  
Ho = Ha + R + PA + SD · signlimb 
 
Here we see that the altitude correction Corr ALT = R + PA + SD · signlimb  
Note:  Convert arcminutes to decimal degrees for consistent calculations.
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Artificial horizon 
 
A fun way of practicing sighting the Sun while on land is to use an artificial 
horizon.  This is simply a pan of water or old motor oil that you place down on 
the ground in view of the Sun.  Since the liquid will be perfectly parallel with 
the true horizon (no dip corrections here), it can be used as a reflecting plane.  
In essence you point the sextant to the pan of liquid where you see the 
reflection of the Sun.  Move the index arm until you bring the real Sun into the 
pupil image with the index mirror.  With the micrometer drum bring both 
images together (no semi-diameter corrections either) and take your reading.  
This gives a reading twice the apparent altitude.  Undoubtedly you will need to 
position extra filters over the horizon mirror to darken the Sun’s image, as 
normally you would be looking at a horizon.  Correct the reading by taking the 
apparent altitude Ha and divide by two, then add the refraction correction: 
 
Ha = (Hs + IC)/2       no dip correction 
Ho = Ha + R               no semi-diameter correction 
 
The wind is very bothersome, as it will ripple the water’s surface and therefore 
the reflected image.  Protective wind guards around the pan work somewhat, 
but generally you may have to wait minutes for a perfect calm.  What works 
best is mineral oil in a protected pan set up on a tripod so that you can get 
right up to it.  The ripples dampen out almost immediately. 
 
To be very accurate, you can let the sun touch limb-to-limb.  If pre-meridian 
(morning) then let the bottom image rise onto the reflected image, measure the 
time, and SUBTRACT a semi-diameter (UL): Ho = Ha + R - SD 
If post meridian (afternoon), let the top image set onto the reflected image, 
measure the time, and ADD a semi-diameter (LL): Ho = Ha + R + SD 
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Chapter 7   Reading the Nautical Almanac 
 
The nautical almanac has detailed explanations in the back regarding how to 
read the tabular data and how to use the interpolation tables (increments and 
corrections).  The data is tabulated for each hour on the dot for every day of 
the year, and you must interpolate for the minutes and seconds between hours. 
Every left hand page in the almanac is similar to all other left hand pages, and 
the same for all right hand pages.  Three days of data are presented for every 
left and right hand page pairs.  The left page contains tabular data of GHA and 
declination for Aries (declination = 0), Venus, Mars, Jupiter, Saturn and 57 
selected stars.  The right page has similar data for the Sun and Moon.  It also 
provides the Local Mean Time (LMT) for the events of sunrise, sunset, 
moonrise, and moonset at the prime meridian.  For your particular locality, you 
can express the event time in UT with the following equation: 
 
EventTimeUT = LMT – Longitude/15.   Hours UT at your longitude.  
Remember the sign convention, West -, East +. 
 
Interpolation tables, v and d corrections 
Probably the most confusing part of the tables is interpolation for times between 
hourly-tabulated data, and how to properly apply the mysterious v and d 
corrections.  The interpolation tables (‘increments and corrections’) are based 
on nominal rates of change of GHA for the motions of the Sun and planets, 
Moon, and Aries. This way, only one set of interpolation tables is required, with 
variances to the rates compensated with the v and d values.  These are hourly 
variances, and their applicable fraction (the correction Corr V and Corr d) is 
given in the interpolation tables for the minute of the hour.  The v number 
refers to variances in the nominal GHA rate.  There is no nominal rate for 
changes in declination, so d is the direct hourly rate of change of declination.  
For GHA, the interpolation tables will tabulate increments (Corr GHA) down to 
the second of each minute.  The v and d correction is interpolated only for 
every minute.  Take the hourly data in the tables, GHA, add the interpolated 
increment for the minutes and seconds, and finally add the interpolated v 
correction.  Similarly for declination, take the tabulated hourly value Dec and 
add the interpolated d correction.  Our sign convention imposes that a south 
declination is negative, and a north declination is positive.  A word of caution, 
the value of d (with our sign convention) may be positive or negative.  If the 
tabulated hourly data for declination is advancing northwards (less southwards), 
then the sign is positive. We could have a negative declination (south), but have 
a positive d if declination is becoming less southwards.  Along the same line, we 
could have a positive declination (north) but a negative  d if the declination is 
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heading south (less northwards).  Unfortunately the almanac has no sign for d 
so you must devine the correct sign by looking at the progression of DEC. 
  
The final values at the particular hour, minute, and second are thus: 
GHA = GHAhour + Corr 

GHA + Corr V  (For stars GHA = SHA + GHAAries) 
DEC = DEC hour + Corr 

d  
Where GHAhour and DEC hour  are the table values in the almanac for the hour. 
 
After all the interpolations and corrections are performed, convert the angles to 
decimal degrees and make sure the sign convention was applied consistently to 
the declination value.  
 
Note:  In the nautical almanac, liberal use is made of the correction factor 
Corrn.  It seems to appear everywhere and applied to everything.  The n is 
actually a variable name for any of the parameters that require ‘correction’.  
Notably, Corr DIP, Corr ALT, Corr GHA, Corr V, and Corr d. 
 
 
Since we like to use our calculators, instead of using the ‘increments and 
corrections’ table (it’s actually very easy) we can interpolate for ourselves in the 
following manner.  Let’s say we shot an observation at Universal Time H 
hours, M minutes, and S seconds (H:M:S).  The nautical almanac tables for the 
particular day gave us a GHA in degrees and arcminutes at the UT hour.  We 
convert it to decimal degrees and call it GHAhour.  We do the same for the 
declination and call it DEC hour.  Note the hourly variance v and declination rate 
d in arcminutes per hour.  We can also define the hour fraction, ∆t, which are 
the minutes and seconds in decimal form: ∆t = (M/60) + (S/3600).  Now, the 
correct interpolated value for our specific time of observation is thus: 
GHA = GHAhour + {Rate + (v/60)} · ∆t      decimal degrees 
 
Where             Rate = 15.00000   (degrees/hour) for Sun or planets 
                       Rate = 14.31667   (degrees/hour) for Moon 
                       Rate = 15.04107   (degrees/hour) sidereal rate for Aries 
 
In a similar line, declination is interpolated thus: 
DEC = DEC hour + (d/60) · ∆t       (DEC hour and d with the proper sign) 
 
Note, v/60 and d/60 converts arcminutes per hour to degrees per hour. 
Carry out all calculations to 4 decimal places, and make sure the sign 
convention was applied correctly (carpenter’s rule: measure twice, cut once).  
Visit an on-line Nautical Almanac at: http://www.tecepe.com.br/scripts/AlmanacPagesISAPI.isa  
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Chapter 8   Sight Reduction 
 
The process of taking the raw observational data and turning the information 
into a Line Of Position (LOP) is called sight reduction.  Even though the 
equations and methods have been described all throughout the book, what is 
needed here most is organization to minimize the calculation random errors. 
 
History 
Trigonometric tables were first published by Regiomontanus in the mid 1400's, 
followed by the early logarithm tables of Edmund Gunter in the late 1600’s, 
which allowed multiplication to be treated as addition problems.  This is the 
basis of the slide rule (does anybody remember those??).  French almanacs 
were published in the late 1600’s where the original zero longitude ‘rose line’ 
ran thru Paris.  The English almanacs were published later in the 1700’s.  The 
altitude-difference method of determining a line of position introduced the age 
of improved navigation, described in 1875 by Commander Adolphe-Laurent- 
Anatole Marcq de Blonde de Saint-Hilaire, of the French Navy. This ‘Marcq 
Saint-Hilaire’ method remains the basis of almost all celestial navigation used 
today.  But the Sumner line method may be considered equally easy, 2 
computations for the Saint-Hilaire method, and 2 for the Sumner line method.  
Computed altitude and azimuth angle have been calculated by means of the log 
sine, cosine, and haversine ( ½ [1-cos(a)]  also called natural haversine) tables.  

Sight reduction was greatly simplified early in the 1900’s by the coming of the 
various short-method tables - such as the Weems Line of Position Book, 
Dreisonstok's Hydrographic Office method H.O. 208 (1928), and Ageton's H.O. 
211 (1931). Almost all calculations were eliminated when the inspection tables, 
H.O. 214 (1936), H.O. 229, and H.O. 249 were published, which tabulated 
zillions of pre-computed solutions to the navigational triangle for all 
combinations where LHA and latitude are whole numbers.  The last two 
methods, H.O. 229 and H.O. 249 developed in the mid 1940’s and early 1950’s 
remain the principle tabular method used today.  The simplest tabular method 
of all is to use a shorthand version of Ageton’s tables known as the S-tables, 
which are only 9 pages long.  No whole number assumptions are required, and 
the answers are the same as a navigational calculator.  You must do some 
minor addition, though, and the tables are a bit of a maze (takes practice). 

The following page is an example of a sight-reduction form using the 
“calculator method” instead of the typical HO 229, 249 tabular methods.
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 SIGHT REDUCTION BY CALCULATOR, INTERCEPT METHOD 
 
Sun / Moon / Planet / Star     LL / UL   UT  Date _____m _____d______yr 
Time of observation  UTC = _____h _____m _____s 
DR position (1)   Lat = ____________    Lon = _____________ 

Eye height     Heye ______meters 
Index correction   IC = ______ arcmin  (remember + or – sign) 
Sextant measured altitude Hs = __________deg  _________arcmin 
 
Dip correction from the corrections table (always -):  CorrDIP = - __________    
Apparent altitude Ha =    Hs + IC + CorrDIP      Ha    = ____________ 
Altitude correction from the corrections table:  CorrALT = ___________ 
True altitude Ho = Ha  + CorrALT        Ho    = ____________ 
 
From the almanac tabular data, at the h hour on the UT date: 
GHA table = ____________   v = ___________    
DEC table =  ____________  (1)        d = ___________ (careful of the sign) 
SHA = _____________ if star 
Increment of GHA for the m minutes and s seconds CorrGHA = ___________ 

Additional increment due to variation v    Corrv  =     ___________ 
(2) GHA = GHA table  + CorrGHA + Corrv    GHA =     ___________ 
 

Increment of DEC for m minutes due to rate d is  Corrd  =     ___________ 
DEC = DEC table + Corrd     DEC =      ___________ 
_____________________________________________________________ 
 
Local Hour angle LHA = GHA + Lon      LHA = ___________ 
 
   (repeat Ho here to subtract Hc from)       Ho  _______________ 
 

arcSin[ Sin(DEC) · Sin(Lat)  +  Cos(Lat) · Cos(DEC) · Cos(LHA) ]    = Hc  _ ______________ 
 

Ho – Hc = _______________ · 60  =    Offset Distance      = Doffset                  n.miles 
 

arcCos[{Sin(DEC) –   Sin(Lat) ·  Sin(Hc)}/{Cos(Lat) · Cos(Hc)}]       =  Zo   ______________ 
 

True Azimuth Angle from True North Zn 
If LHA is pre-meridian passage (-, or 180<LHA < 360), Zn = Zo 
If LHA is post-meridian passage (0<LHA < 180), Zn = 360 – Zo       Zn = __________ 

 
Notes:  (1)  North is+, South is -.  East is +, West is - 

(2)  GHA table  = SHA + GHA Aries   for a star 
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Sun Shot Example 
 
Let’s say this is the data: 
DR position  Lat = 44.025˚ N,    Lon = -67.850˚ W 
Eye height = 2 meters        Greenwich date 7/15/2001 
Index correction IC = +3.4’  (off the arc) 
Time of observation UTC = 14h 15m 37s 
Sextant measured altitude of the sun Hs = 52˚  52.3’   Lower Limb 
 
Altitude corrections from the abridged corrections table: 
CorrDIP = -2.5’     CorrALT = +15.3’  (interpolate  in your head) 
Observed true altitude Ho = 52˚ 52.3’ + 3.4’ -2.5’ +15.3’ = 53˚ 8.5’  = 53.1416˚ 
(Remember adding a negative number is the same as subtracting the number) 
 
From the almanac tabular data, at the 14th hour July 15 2001: 
GHA table = 28˚ 30.6’     
DEC table = +21˚ 27.3’  N          d = -0.4’ (moving less northerly, so -d) 
 
Increment of GHA for the 15 minutes and 37 seconds CorrGHA = 3˚  54.3’ 
GHA = 28˚  30.6’  + 3˚  54.3’ = 32˚  24.9’ = 32.4150˚ 
 

Increment of DEC for 15 minutes due to rate d is Corrd = - 0.1’ 
DEC = +21˚  27.3’  - 0.1’ =  21˚ 27.2’  = 21.4533˚ 
 
Calculations: 
 
Local Hour angle LHA = GHA + Lon = 32.415˚ + - 67.850˚ = - 35.435˚ 
 
Calculated Altitude 
Hc = arcSin[ Sin(21.453˚) · Sin(44.025˚)  +  Cos(44.025˚) · Cos(21.453˚) · Cos(- 35.435˚) ]  
Hc = 53.0767˚  = 53˚  4.6’ 
 
Intercept Offset distance Doffset =  60 · (53.1416˚ – 53.0767˚) = +3.9 n mile 
Offset the assumed LOP towards the Sun azimuth. 
 
Calculated Azimuth direction of sun 
Zo = arcCos[{Sin(21.453˚) – Sin(44.025˚) · Sin(53.0767˚)}/{Cos(44.025˚) · Cos(53.0767˚)}] 
Zo = 116˚, and since LHA is negative (pre-meridian), Zn = Zo = 116˚
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Moon Shot Example 
 
Let’s say this is the data: 
DR position  Lat = 44.025˚ N,    Lon = -67.850˚ W 
Eye height = 2 meters        Greenwich date 7/15/2001 
Index correction IC = +3.4’ 
Time of observation UTC = 14h 20m 21s 
Sextant measured altitude of the moon Hs = 44˚  22.1’   Upper Limb (UL) 
 
Altitude corrections from almanac moon correction tables, in two parts: 
CorrDIP = -2.5’ 
CorrALT = +50.9’ + 3.2’ –30.0’ (the –30’ is for using the UL)     = 24.1’ 
True altitude Ho = 44˚ 22.1’ + 3.4’ -2.5’ +24.1’ = 44˚ 47.1’  = 44.7850˚ 
 
From the almanac tabular data, at the 14th hour July 15 2001: 
GHA table = 100˚ 23.7’     v = +12.2’ 
DEC table = +12˚ 9.4’  N          d = +11.2’   HP = 56.8’ 
 
Increment of GHA for the 20 minutes and 21 seconds CorrGHA = 4˚  51.3’ 

Additional increment due to variation v  Corrv = 4.2’ 
GHA = 100˚  23.7’  + 4˚  51.3’ + 4.2’ = 105˚  19.2’ = 105.3200˚ 
 

Increment of DEC for 20 minutes due to rate d is Corrd = +3.8’ 
DEC = +12˚  9.4’  + 3.8’ =  12˚ 13.2’  = 12.2200˚ 
 
Calculations: 
 
Local Hour angle LHA = GHA + Lon = 105.32˚ + - 67.850˚ = 37.470˚ 
 
Calculated Altitude 
Hc = arcSin[ Sin(12.22˚) · Sin(44.025˚)  +  Cos(44.025˚) · Cos(12.22˚) · Cos( 37.470˚) ]  
Hc = 44.817˚  = 44˚  49.0’ 
 
Intercept Offset distance Doffset =  60 · (44.368˚ – 44.817˚) = -2.0 n mile 
Offset the assumed LOP away from the moon’s azimuth. 
 
Calculated Azimuth direction of moon 
Zo = arcCos[{Sin(12.22 ˚) –    Sin(44.025˚) · Sin(44.817˚)}/{Cos(44.025˚) · Cos(44.817˚)}] 
Zo = 123˚, and since 0 <  LHA <180 (post-meridian), Zn = 360 - Zo = 237˚ 
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Star Shot Example 
 
You took a shot of Deneb in the constellation of Cygnus, morning twilight: 
DR position  Lat = 44.025˚ N,    Lon = -67.850˚ W 
Eye height = 2 meters        Greenwich date 7/15/2001 
Index correction IC = +3.4’ 
Time of observation UTC = 8h 31m 24s 
Sextant measured altitude of Deneb,   Hs = 59˚  47.8’ 
 
Altitude corrections from the abridged corrections table: 
CorrDIP = -2.5’ 
CorrALT = -0.5’ 
True altitude Ho = 59˚ 47.8’ +3.4’  –2.5’ – 0.5’ = 59˚ 48.2’  = 59.8033˚ 
 
From the almanac tabular data, at the 8th hour July 15 2001: 

GHAAries table = 53˚ 14.4’     SHADENEB = 49˚  37.4’ 
DECDENEB = +45˚ 17.1’  N           

No v or d corrections for stars 
Increment of GHA for the 31 minutes and 24 seconds CorrGHA = 7˚  52.3’ 
GHA = 53˚  14.4’  + 7˚  52.3’ + 49˚  37.4’ = 110˚  44.1’ = 110.735˚ 
 
DEC = DECDENEB = +45˚ 17.1’  N = +45.2850˚ 
 
Calculations: 
 
Local Hour angle LHA = GHA + Lon = 110.735˚ + – 67.850˚ = 42.885˚ 
 
Calculated Altitude 
Hc = arcSin[ Sin(45.285˚) · Sin(44.025˚)  +  Cos(44.025˚) · Cos(45.285˚) · Cos( 42.885˚) ]  
Hc = 59.830˚  = 59˚  49.8’ 
 
Intercept Offset distance Doffset =  60 · (59.8033˚ –59.830˚) = –1.6 n mile 
Offset the assumed LOP away from the star’s azimuth. 
 
Calculated Azimuth direction of star 
Zo = arcCos[{Sin(45.2850˚) –  Sin(44.025˚) · Sin(59.83˚)}/{Cos(44.025˚) · Cos(59.83˚)}] 
Zo = 72˚, and since 0 <  LHA <180 (post-meridian), Zn = 360 - Zo = 288˚ 
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Planet Shot Example 
 
Mars in the evening, same local day, but the next day in GMT: 
DR position  Lat = 44.025˚ N,    Lon = -67.850˚ W 
Eye height = 2 meters        Greenwich date 7/16/2001 
Index correction IC = +3.4’ 
Time of observation UTC = 01h 11m 24s 
Sextant measured altitude of Mars,  Hs = 18˚  40.0’ 
 
Altitude corrections from the abridged corrections table: 
CorrDIP = -2.5’ 
CorrALT = -3.0’ 
True altitude Ho = 18˚ 40.0’ +3.4’  –2.5’ – 3.0’ = 18˚ 37.9’  = 18.632˚ 
 
From the almanac tabular data, at the 1st hour July 16 2001: 
GHAMARS table = 55˚ 30.6’    DECMARS  table = –26˚ 50.5’  S           
v  = +2.6’   and d =0  
Increment of GHA for the 11 minutes and 24 seconds CorrGHA = 2˚  51.0’ 

Additional increment due to variation v  Corrv = 0.5’ 
GHA = 55˚  30.6’  + 2˚  51.0’ + 0.5’ = 58˚  22.1’ = 58.368˚ 
 
DEC = DECMARS = –26˚ 50.5’  = –26.842˚ 
 
Calculations: 
 
Local Hour angle LHA = GHA + Lon = 58.368˚ + – 67.850˚ = – 9.482˚ 
 
Calculated Altitude 
Hc = arcSin[ Sin(-26.842˚) · Sin(44.025˚)  +  Cos(44.025˚) · Cos(-26.842˚) · Cos( -9.482˚) ]  
Hc = 18.602˚  = 18˚  36.1’ 
 
Intercept Offset distance Doffset =  60 · (18.632˚ – 18.602˚) = +1.8 n mile 
Offset the assumed LOP towards Mars’s azimuth. 
 
Calculated Azimuth direction of Mars 
Zo = arcCos[{Sin(-26.842˚) – Sin(44.025˚) · Sin(18.602˚)}/{Cos(44.025˚) · Cos(18.602˚)}] 
Zo = 171˚, and since LHA is negative (pre-meridian), Zn = Zo = 171˚ 
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Plots of the Lines Of Position (LOP) from the previous 4 examples 
 
The observer was stationary during all of the observations.  The arrows indicate 
the azimuth direction (bearing from true north) of the heavenly objects.  These 
observations are over the course of a day, from early morning twilight to mid-
morning to evening twilight.  The ellipse represents the 95% probability area of 
the position fix using all 4 LOPs. 
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Chapter 9  Putting it Together and Navigating 
 
I encourage you the navigator to program your simple calculators to provide 
the calculated altitude Hc and calculated uncorrected azimuth Zo from inputs 
of latitude, longitude, GHA, and DEC.  It’s too easy to make mistakes 
punching in numbers and doing the trig.  A simple programmable calculator 
mechanizing the simple steps in the calculations will go a long way in reducing 
the silly arithmetic errors. 
 
Plane Sailing and Dead Reckoning (DR) 
With the celestial methods described so far, an important element was the 
estimated position, also known as the dead reckoning (DR) position.  
Undoubtedly, if you didn’t reckon correctly, you would sooner or later regret it.  
Strictly speaking, an estimated position is not needed, just as it is not needed 
with the Global Positioning System.  In the case of GPS, orbiting spacecraft have 
geographical positions and circles of constant altitude, but electronically it is 
circles of constant timing.  Three spacecraft, three circles and you are 
pinpointed.  But since intersecting straight LOPs is a lot easier than solving 
simultaneous equations for intersecting circles, an estimated position is 
essential for our simple methods.  In our day-to-day wanderings, flat-Earth 
approximations are close enough to advance the estimated position from a 
previously known fix.  These approximation methods are known as plane sailing.   
 
Dead reckoning is simple to understand on a flat earth, say using your car.  If 
you head northwest at 60 mph, and you drove for 2 hours, you should be 120 
miles to the northwest of your last position.  But on a spherical surface, the 
longitude lines start to crowd in on each other as they reach the poles.  The 
‘crowding in’ at the current latitude can be thought of as being more or less 
fixed for short distances.  Just think, on the north or South Pole, you could 
wander across all 360 longitude lines in just a few short steps! 

 
Plane Sailing Shorthand 
True course from true north TC 
Speed of vessel, knots 
Time interval from last fix, hours 
D = Speed · Time  distance traveled nmile 
DEW = D sin(TC)  east-west distance 
DNS = D cos(TC)  north-south distance 
∆Lat = DNS        arcmin latitude change 
∆Lon = DEW /cos(Lat) arcmin longitude change 
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Plane Sailing Work Sheet 
 
Last Known Latitude, decimal degrees N+, S-  
 

LatO = 
 
Last Known Longitude, decimal degrees E+, W- 
 

LonO = 
 

Speed of vessel, corrected for current, knots (kts) 
 

V = 
 

Time interval between the present desired fix and the last fix, decimal hours 
 

                            ∆∆∆∆Time =   
 
True course made good (heading, compensated for leeway and current), 
decimal degrees from true north 

 
         TC = 
 
Estimate of distance, nautical miles (nm) 

D = V · ∆∆∆∆Time 
 
Change in latitude, arcminutes 

∆∆∆∆Lat = D · Cos(TC)                           
 
New estimated latitude, decimal degrees  

LatDR = LatO + ∆∆∆∆Lat/60 
 

Change in longitude, arcminutes        

∆∆∆∆Lon = D · Sin(TC)/Cos(LatO + ∆∆∆∆Lat/120) 
 
New estimated longitude, decimal degrees  

LonDR = LonO + ∆∆∆∆Lon/60 
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Running Fix 
The running fix is a method by which two or more line of positions (LOPs) 
taken at different times on a moving vessel can be coalesced together to 
represent a navigational fix at any single arbitrary time between the 
observations.  Most frequently, it is used to advance an old LOP to get a fix 
with a new LOP while the ship is under way.  Quite simply, the old LOP is 
parallel-advanced in the direction of the true course-made-good (TC) to the 
DR distance between the last LOP and the new one.  With a quick study of the 
figure, the reader should discern the mechanics involved.  Essentially, if you 
produced a ‘good’ LOP earlier, you can ‘drag it’ along with your moving vessel 
as if it were pinned to the stern using the simple distance = rate x time for the 
distance to drag, and it gets dragged in the same course direction as the vessel. 
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Daily Observation Schedule 
During your typical navigating in-the-blue sort of day, you would follow a 
procedure similar to this: 
1) Pre-dawn sighting of planets and stars, providing a definite fix. 
2) Mid-morning Sun observation, advancing a dawn LOP for a running fix. 
3) Noonish sighting, advancing the mid-morning LOP for a running fix. 
4) Mid-afternoon Sun observation, advancing the noon LOP for a running fix. 
5) Twilight observation of planets and stars, providing a definite fix. 
 
Note: Morning and evening twilight observations need to be carefully planned.  
It is a time when both night objects and the horizon are visible simultaneously.  
That’s not a whole lot of time for off-the-cuff navigation.  Plan the objects, 
their estimated altitudes and azimuth angles.  Double check with the compass, 
so that you are sure of what you are looking at. 
 
A Sun-Moon fix is nice when available.  When the moon is a young moon, it 
will be in the sky east of the sun in the late afternoon.  When it is an old moon, 
it will share the sky west of the sun during the morning hours. 
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Plotting Multiple Lines of Position (LOP) with Running Fixes 
 
Plotting the LOPs is best done on a universal plotting sheet, which is a sheet 
of paper with a graduated compass rose in the center.  This is very convenient, 
as you can do everything necessary to plot a LOP, requiring in addition a 
drafting triangle and a scaled ruler.  Let us say that we have the true course TC, 

the speed V (kts), the times of the observation t1 , t2 , t3 (decimal hrs), etc., the 
observed altitudes Ho1, Ho2, Ho3, and an assumed position LATa, LONa.  
From sight reduction, we also have the calculated altitudes Ha1, Ha2, Ha3, the 
intercept distances Doffset1, Doffset2, Doffset3 and the calculated azimuths 
Zn1, Zn2, Zn3.  Since the vessel is continuously underway, we define an 
arbitrary time that we want the newest fix to apply to.  We were at such-and-
such location at such-and-such time, even though that time does not 
correspond exactly to any of the observation times.  This selected time for the 

fix is called the time of fix, tfix.  We calculate the running fix distance 
corrections that each observation will require, and designate it Roffset1, 
Roffset2, Roffset3.  The corrections are calculated thus: 
 

Roffset1 = V · (tfix – t1 ),       Roffset2 = V · (tfix – t2 ), etc..  (n.miles) 
 
Notice that for observation times after the time of fix, the offset is negative. 
 
The procedure seems complicated, but after trying it once, the mechanics will 
seem obvious.  Basically you draw the Roffset vector from the center of the 
compass rose along the direction of the true course, then draw the Doffset 
vector from the head of the Roffset vector, then draw the LOP from that 
point.   
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Here are the detailed steps: 
1) The very center of the compass rose on the plotting sheet is designated as 
the assumed position LATa, LONa.  All else is relative to this location. 

2) Draw a line thru the center in the direction of the true course TC going 
both ways, but with an arrow showing the forward direction. 

3) Generally there are two scales you can use.  The plotting sheet has a built-in 
scale of 60 n.miles which could just as easily be 6 n.miles for those close 
encounters.  Staying in either the 60 or 6 n.m. scale makes corresponding 
latitude and longitude measurements possible without calculations. 

4) For the first observation, measure along the true course line in the forward 
direction (if Roffset is +, backwards if Roffset is -) the distance Roffset and 
mark it with a dot. 

5) Then from that mark, draw a line in the azimuth direction Zn, the length 
being the distance Doffset.  If Doffset is negative, draw the line in the 
opposite direction (180 degrees different).  Mark the spot. 

6) Draw a line perpendicular to the Zn, passing thru the last mark.  This is the 
LOP compensated for intercept and running to an arbitrary time. 

7) Repeat for all the other LOPs. 
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69 
 

Once all the LOPs are plotted, you can mark what appears to be the best 
solution of the fix.  Measure the distance with the linear scale you are using for 
the plot from the center.  The north-south distance we will designate as DLAT, 
and the east-west distance as DLON in nautical miles.  Following the sign 
conventions, if northwards or eastwards, the number is +.  If southwards or 

westwards, the number is -.  The corrective change ∆    in latitude and longitude 
from the assumed position LATa, LONa is thus: 
 

LAT∆∆∆∆ = (DLAT / 60)                                       decimal degrees 
 

LON∆∆∆∆ = (DLON/ 60)/ Cos(LATa + LAT∆∆∆∆/2)  decimal degrees 
 
The position of the new fix is thus: 

LATFIX = LATa + LAT∆∆∆∆ 

LONFIX = LONa + LON∆∆∆∆ 
 

The corrective change can also be deduced graphically, from the universal 
plotting sheet, as it is really set up for this.  The compass rose lets you set up 
your own custom longitude scale for your latitude.  Where the latitude angle 
intersects the circle, you draw the custom longitude line for that position.  
Remember, 1 nautical mile N-S is equivalent to 1 arc minute of latitude. 
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CALCULATING A FIX FROM MULTIPLE LOPs FROM A FIXED
 ASSUMED POSITION WHILE RUNNING

N = total number of LOPs
participating in the fix

Form the quantities A,B,C,D,E,G from these summations:

A =

1

N

n

Cos AZM
n

2

=

B =

1

N

n

Cos AZM
n

Sin AZM
n

.

=

C =

1

N

n

Sin AZM
n

2

=

D =

1

N

n

Cos AZM
n

p1
n

p2
n

.

=

G = A C. B
2

E =

1

N

n

Sin AZM
n

p1
n

p2
n

.

=

Where p1
n

=
Doffset

n

60
and p2

n
=

Roffset
n

60
Cos AZM

n
TC.

Doffsetn is the nth intercept offset distance, n.miles

Roffsetn is the nth running-fix offset distance, n.miles

AZMn is the nth azimuth direction of the nth heavenly body

TC is the true course angle from true north

LON I = LON A
A E. B D.( )

G Cos LAT A
.

Improved Longitude estimate from the assumed position

LAT I = LAT A
C D. B E.( )

G
Improved Longitude estimate from the assumed position

dist = 60 LON I LON A
2

cos LAT A
2. LAT I LAT A

2.

Distance from assumed fix to calculated fix, nm. Should be < 20 nm.
If not, use the improved fix as the new assumed position and start all over again   
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Good Practice and Error Reduction Techniques 
 
There are many sources of error, not the least misidentification of the heavenly 
object.  Slim chance of that happening with the Sun or Moon.  With objects 
that you are sure of, a set of 3 or 4 shots of each known object can reduce 
random measurement errors.  With stars at twilight, perhaps it is better to take 
single shots but have many targets to reduce the effects of misidentification.  
This type of error has the distinction of putting you hundreds of miles off, and 
so are easy to catch, allowing you to disregard the specific data.   
 
Handling measurement random errors graphically: 

 
 
Random Errors 
The effect of multiple shots of the same object are such that the random errors, 
some +, some -, will average to zero.  Random measurement errors of plus or 
minus several miles are handled several basic ways for a set of shots of the 
same object: 
1) Calculate all the LOPs in a set and average them graphically on the map. 
2) Arithmetically average the times and altitudes for a set of shots, and 
calculate one LOP using the averaged value of time and altitude. 

3) Graph the set of shots with time on the horizontal and altitude on the 
vertical. Draw a line representing the average and from that pick one 
time and altitude from the line to calculate one LOP.  This is the easiest. 

4) Graph the shots as in 3), but calculate a slope and fit it to the data.  The 
slope is determined by calculating Hc for two different times in the 
range of the data set with your estimated position.  With these two new 
points, draw a line between them.  Parallel offset this new line until it fits 
best in the data points already drawn.  Then, as in 3), pick one time and 
altitude from the line to calculate one LOP. 
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Using technique 4) should result in the most accurate LOP; however there are 
more calculations making it the same trouble as 1).  On the other hand, 
practical navigation is not usually concerned with establishing a position to 
within ¼ mile, so unless you are particular, graphing your measurements as 
in technique 3) may be the easiest to implement with a good payoff for 
reducing random errors.  Arithmetically averaging instead of graphically 
averaging is a good way to introduce unwanted calculation mistakes, so I would 
steer away from technique 2) for manual calculations. 
   
Systematic Errors 
This species of error, where a constant error is in all of the measurements, can 
come from such things as an instrument error, a misread index error, your 
personal technique and bias, strange atmospheric effects, and clock error.  All 
but clock error can be handled with the following technique.  If you have many 
objects to choose from, choose 4 stars that are ~90 degrees apart from each 
other in azimuth, or with 3 stars make sure they are ~120 degrees apart.  This 
creates a set of LOPs where the effect of optical systematic errors cancels.   
 
Examples of Systematic Error: 
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The steps for good practice  
 
1) For a good fix, pick 3 or more clearly identified heavenly objects. 
 
2) Pick objects that are spaced in azimuth 90 to 120 degrees apart for 
systematic error reduction. 

 
3) If you can, make a tight spaced grouping of 3 shots per object. 
 

4) Apply averaging techniques for random error reduction. 

 

5) Advance the LOPs with a running fix technique to time coincide with the 
time of your last shots. 
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Chapter 10   Star Identification 
 
There are various star finding charts, the 2102-D and Celestaire star chart come 
to mind.  However, you could use the equations for calculated altitude and 
azimuth, rearranged, to help you identify stars.  Now this only applies to the 
bright 58 ‘navigational stars’, as data for their position on the celestial sphere 
(star globe) is given. 
Rearranging the azimuth equation, we get the declination DEC: 
 

DEC = arcSin[cos(AZM) · cos(Lat) · cos(H)  + sin(Lat) · sin(H)] 
 
If the declination is +, it is North, if – then it is South. 
AZM is the approximate azimuth angle (magnetic compass + magnetic 
variation), Lat is the assumed latitude, and H is the altitude angle (don’t bother 
with dip and refraction corrections). 
Rearrange the calculated altitude equation to get local hour angle LHA: 
 

LHA = (+/-) arcCos[{sin(H)  - sin(DEC) · sin(Lat)} / {cos(Lat) · cos(DEC)}] 
 
If the azimuth is greater than 180˚, then LHA is +. 
If the azimuth is less than 180˚, then LHA is –. 
The sidereal hour angle (‘longitude’ on the star globe) is then: 
 
SHA = LHA – GHAAries – Lon 
 
Where GHA aries is the Greenwich hour angle of aries (zero ‘longitude’ on the 
star globe) at the time of this observation from the almanac, and Lon is the 
assumed longitude position. 
 
Once you have the essential information, SHA and DEC, then you can look it 
up in the star chart data to match it with the closest numbers.  If the numbers 
still don’t match any stars, then look in the almanac to match up SHA and 
DEC with any planets listed. 
 
Star magnitudes refer to their brightness.  Numerically, the larger the number, 
the dimmer the star.  The brightest stars actually have negative magnitudes, 
such as Sirius (the brightest star) has a magnitude of -1.6. 
 
It’s actually best to this by software, or have constellation charts handy. 
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The 58 Navigational Stars Listing 
 
SHA DEC Star magnitude color constellation 
358 +29 Alpheratz 2.2  Great Square 
354 -42 Ankaa 2.4 Orange Phoenix 
350 +57 Schedar 2.5 Orange Cassiopeia 
349 -18 Diphda 2.2  Cetus 
336 -57 Achernar 0.6  Eridanus 
328 +23 Hamal 2.2 Orange Aries 
324 +89 Polaris 2.1  Little Dipper 
315 -40 Acamar 3.1  Eridanus 
315 +4 Menkar 2.8  Cetus 
309 +50 Mirfak 1.9  Perseus 
291 +16 Aldebaran 1.1 Orange Taurus 
281 -8 Rigel 0.3 Blue Orion 
281 +46 Capella 0.2 Yellow Auriga 
279 +6 Bellatrix 1.7  Orion 
279 +29 Elnath 1.8  Taurus 
276 -1 Alnilam 1.8  Orion 
271 +7 Betelgeuse 1.0 Red Orion 
264 -53 Canopus -0.9 White Carina 
259 -17 Sirius -1.6 White Canis Major 
255 -29 Adhara 1.6  Canis Major 
245 +5 Procyon 0.5 Yellow Canis Minor 
244 +28 Pollux 1.2  Gemini 
234 -59 Avior 1.7  Carnia 
223 -43 Suhail 2.2  Vela 
222 -70 Miaplacidus 1.8  Carnia 
218 -9 Alphard 2.2  Hydra 
208 +12 Regulus 1.3  Leo 
194 +62 Dubhe 2.0  Big Dipper 
183 +15 Denebola 2.2  Leo 
176 -18 Gienah 2.8  Cygnus 
173 -63 Acrux 1.1  S. Cross 
172 -57 Gacrux 1.6  S. Cross 
167 +56 Alioth 1.7  Big Dipper 
159 -11 Spica 1.2 Blue Virgo 
153 +49 Alkaid 1.9  Big Dipper 
149 -60 Hadar 0.9  Centarus 
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SHA DEC Star magnitude color constellation 
148 -36 Menkent 2.3  Centarus 
146 +19 Arcturus 0.2 Orange Bootes 
140 -61 Rigil Kent 0.1  Centarus 
137 -16 Zuben’ubi 2.9 White Libra 
137 +74 Kochab 2.2 Orange Little Dipper 
126 +27 Alphecca 2.3  Corona Borea. 
113 -26 Antares 1.2 Red Scorpio 
108 -69 Atria 1.9  S. Triangle 
103 -16 Sabik 2.6  Ophiuchus 
097 -37 Shaula 1.7  Scorpio 
096 +13 Raselhague 2.1  Ophiuchus 
091 +51 Eltanin 2.4  Draco 
084 -34 Kaus Australis 2.0  Sagittarius 
081 +39 Vega 0.1 White Lyra 
076 -26 Nunki 2.1  Sagittarius 
062 +9 Altair 0.9  Aquila 
054 -57 Peacock 2.1  Pavo 
050 +45 Deneb 1.3  Cygnus 
034 +10 Enif 2.5 Orange Pegasus 
028 -47 Al Na’ir 2.2  Grus 
016 -30 Fomalhaut 1.3  Piscis Austrin. 
014 +15 Markab 2.6  Great Square 
 
If one waits until the Little Dipper is in this orientation, then the 41’ that 
Polaris is off from the celestial pole won’t matter and then the observed 
altitude will equal the latitude.  Kochab will be slightly lower than Polaris. 
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THE CELESTAIRE STAR CHART 
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SOME STAR CHARTS AND THEIR CONSTELLATIONS  
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The “summer triangle” 
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Chapter 11   Special Topics 
 
Determining Longitude and Latitude Individually 
Some simplified methods can be used at specific times of the day to calculate 
latitude and longitude individually, then combining them with running fix 
techniques.  A scenario like this presents itself:  take the height of Polaris at 
dawn twilight for a latitude fix, then with the timing of sunrise or just after with 
the prime vertical sight determine longitude.  Use the running fix technique to 
‘forward’ along the latitude LOP to time coincide with the longitude LOP. 
 
These techniques are probably not used so much anymore, since with tabular 
methods and calculators the complexity of the navigational triangle is not so 
daunting.  In other words, the only limitations now are ones of visibility of the 
heavenly object, not mathematical. 
 
Latitude Determination, a purely East-West LOP 
 
By meridian transit 
This has already been covered in the discussion of the noon sighting for the 
sun.  One could do it for any heavenly body, but the sun is the favorite. 
 
 
By the height of Polaris 
Since Polaris is not exactly on the celestial north pole, corrections for this slight 
offset and annual aberration must be accounted for.  The nautical almanac has 
tables where: 
Latitude = Ho -1˚ + ao + a1 + a2, where Ho = Hs + IC + CorrDIP + CorrALT 
ao is a function of local hour angle LHA 
a1 is a function of estimated latitude 
a2 is a function of what month it is 
 
By the length of time of day 
If you measure the time of day from sunup to sunset in hours, minutes, and 
seconds, you can calculate your latitude.  Start the timing and end the timing 
when the sun’s lower limb is about ½ diameter above the horizon.  Convert the 
time into decimal hours, and name it ElapsedTime. 
 
Lat = arcTan[ -cos(7.5 · ElapsedTime) / tan(DEC)] 
 
Since there are refraction effects, use the altitudes calculated in the next section. 
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Longitude Determination, a purely North-South LOP 
 
By the timing of sunrise or sunset 
The equations simplify when the true altitude Ho is zero.  But due to dip, 
refraction, semi-diameter and index error, the sextant altitude needs to be pre-
set at a low but specific angle to catch the sun at true horizon sunrise or sunset.  
If: 
Ho = Hs  + IC + CorrDIP + CorrALT  then Hs = Ho – IC – CorrDIP – CorrALT 
So, for Ho = 0: 
Hs = – IC – CorrDIP – CorrALT 
It should be apparent that: 
Ha = – CorrALT = –R – SDLL   or   = –R + SDUL 
Since the average sun semi-diameter is 16’, we can figure the refraction 
correction for when Ho = 0.  Refraction correction is a function of Ha, so we 
need to do a little iteration.  Fortunately I’ve done it for you, so here are the 
results: 
Using the sun’s lower limb (LL), the CorrALT = – 15.5’   LL 
Using the sun upper limb (UL), the  CorrALT = – 43’      UL 
 
In short, set the sextant to: 
Hs = – IC – CorrDIP + 15.5’  (LL)  or  Hs = – IC – CorrDIP + 43.0’  (UL) 
 
The dip correction is always negative, but in this equation the double negative 
will make this number a positive.  Same with the altitude corrections in this 
case.  With the sextant preset to this angle, when the sun’s limb kisses the 
horizon, observe the time UTC.  In the almanac, look up the GHA and 
declination, adding the increments for the minutes and seconds. Longitude is 
then: 
Lon = {(+ / -) arcos[-Tan(Lat) · Tan(DEC)]}  - GHA, 
 (+ / -) negative if sunrise or positive if sunset 
 
Example: 
IC = -2.1’,  h = 2 meters, so CorrDIP = - 0.5’.      Latitude = 41.75˚ 
With the sun’s LL CorrALT =  - 15.5’ 
So, preset the sextant angle to Hs = -(-2.1’) – (-0.5’) – (- 15.5’) = + 0˚ 18.1’ 
When the sun is at this altitude, the time was 11h 30m 10s.  From the almanac 
let’s say that GHA =345.390˚, and DEC = 10.235˚ N 
So: Lon = – arcos[-Tan(41.75˚) · Tan(10.235˚)]  - 345.39˚   = - 444.664˚ 
Add 360 to it, Lon = 360˚ – 444.664˚ = - 84.664˚ West Longitude 
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By the prime vertical sight 
If you will recall the illustration on page 21, the prime vertical circle goes from 
due east to the zenith to due west.  In the summer months, the sun will rise a 
bit to the north of east (northern hemisphere) and it may be some time after 
sunrise that the sun crosses this imaginary line.  When it does, the azimuth is 
exactly 90˚. This simplifies the equations such that: 
 
Ho = arcsin[Sin(DEC) / Sin(Lat)] 
Work out the sextant angle by: 
Hs = Ho – IC – CorrDIP – CorrALT 
Determine the UTC time when this condition occurs by waiting for the object 
to attain Hs, then look up in the almanac GHA for the sun.  Then: 
Lon = (+ / -) arcsin[Cos(Ho) / Cos(DEC)] - GHA 
(+ / -) negative if sunrise or positive if sunset 
 
Example: 
IC = -2.1’,  h = 2 meters, so CorrDIP = - 0.5’.      Latitude = 41.75˚ 
If Ha ~ 15˚ then CorrALT = +12.5’ 
For the approximated time, from the almanac DEC = 10.260˚ N 
Ho = arcsin[Sin(10.260˚) / Sin(41.75˚)] = 15.515˚ 
When the sun is at this altitude, the time was 12h 54m 3s.  From the almanac 
let’s say that GHA =6.365˚, and DEC = 10.260˚ N 
Lon =  - arcsin[Cos(15.515˚) / Cos(10.260˚)] – 6.365˚ = - 84.664˚ West 
 
By the time sight 
This uses the Sumner line equation, used only once by imputing your best 
estimate for latitude.  Be careful of the (+/-) sign, determine if the object is pre 
or post meridian.  Easily done with the sextant, if the object continues to rise, it 
is pre meridian.  The closer to meridian transit the less accurate the answer 
since at meridian transit the LOP is East-West, not North-South.  In these 
circumstances, a little error in latitude will translate into a large longitude error 
from the calculation. 
East side of the circle when the object is westwards (post meridian): 
Lon = arcCos[{ Sin(Ho) - Sin(DEC) · Sin(Lat)}/{Cos(Lat) · Cos(DEC)}] – GHA 
 
West side of the circle when the object is eastwards (pre meridian): 
Lon = -arcCos[{ Sin(Ho) - Sin(DEC) · Sin(Lat)}/{Cos(Lat) · Cos(DEC)}] – GHA 
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By the haversine method 
 

One can do this straight with a calculator, or use Norie’s tables which 
have log values and haversines to turn multiplication into addition.  That is the 
basic application of logs, such that if you convert each value of a multiplier by 
its log, then you can add up the results, then finally inverse log to get the final 
product.  For example, if an as yet uncalculated quantity d = a x b x c, then 
when converted it becomes log(a) + log(b) + log(c) = log(d).  Add up the three 
logs then de-convert the result to get d.  The point is that addition is easier on 
the sailor’s brain than multiplication! 
 
Define the haversine function hav of angle a:  hav(a) =  (1 – cos(a)) / 2 
HA = Hour Angle = absolute value of LHA = |LHA| 
ZX = co-altitude = 90 – Ho 
Lat is latitude  Dec is declination of the object. 
 
Basic haversine formulation based on navigational triangle: 
hav(ZX) =   hav(Lat – Dec)   +   cos(Lat) ·cos(Dec) ·hav(HA) 
 
We algebraically manipulate this so that HA is alone on the left side of the 
equation: 
hav(HA) =   [ hav(ZX) - hav(Lat – Dec)]  /  [cos(Lat) · cos(Dec)] 
 
With the simple definition of secant(a) = sec(a) = 1/cos(a): 
hav(HA) =   [ hav(ZX)  -   hav(Lat – Dec)]  · sec(Lat)  · sec(Dec)] 
 
Taking the log of both sides, and using the rules of log where multiplication is 
converted to addition: 
 
Log[hav(HA)] =    
Log[ hav(ZX) - hav(Lat – Dec)]   +   Log[sec(Lat)]   +  Log[sec(Dec)] 
Define  havDiff =   [hav(ZX) - hav(Lat – Dec)] 
  
So finally: 
Log[hav(HA)]  =   Log[havDiff]   +   Log[sec(Lat)]   +  Log[sec(Dec)] 
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Since we have ZX, Lat, and Dec, we can add up the quantities on the right, 
which then equals the Log of the Haversine of HA.  Then we convert log back 
to the Haversine, then convert the Haversine back to just the angle HA.  If you 
have a special table you can do the double conversion in one step. 

Assume we have tables for Haversine of angles, log of quantities, log secant of 
angles, and log Haversine of angles. 

In an algorithm it would look like this: 
1)      Determine latitude Lat from a noon sighting not too many hours ago and 
even update to a DR Lat with plane sailing calculations 
 
2)      Take a sun shot at time T where you measure the sextant angle Hs 
 
3)      Convert Hs to Ho using appropriate corrections 
 
4)      Determine the GHA of the sun at time T with the Nautical Almanac 
 
5)      Determine co altitude ZX = 90 – Ho 
 
6)      Determine latitude difference between you and the sun (Lat – Dec), 

paying attention to the signs for Lat and Dec  (N is +, S is -).  Take the 
absolute value of the final difference (no negative numbers) 

7)      With table, Natural Haversine of ZX 
 
8)      With table, Natural Haversine of (Lat – Dec) 
 
9)      Subtract 8) from 7);  Natural Haversine -   =  

havDiff  =  hav(ZX) - hav(Lat – Dec)   =  7) minus 8) 
 
10)   With table Convert to Log = Log[havDiff] 
 
11)   With table L. Sec. DR. Lat = Log[sec(Lat)] 
 
12)   With table L. Sec. Dec = Log[sec(Dec)] 
 
13)   Add the last three quantities;  Log. Hav. HA = 10) + 11) + 12) = 

Log[havDiff] + Log[sec(Lat)] + Log[sec(Dec)] 
 
14)   With log Haversine table, convert quantity 13) back to an angle HA 
 
15)   If post-meridian subtract HA from GHA, if pre-meridian then add to 

GHA;    Lon = 360 – (GHA +/- HA) 
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Here is a MathCad implementation of the above haversine method with an 
example from a voyage in 1977 by Jack & Jude, an adventurous Australian 
couple, somewhere in the Indian Ocean.  The latitude was determined first 
with a noon sighting, then several hours later another sun shot was taken for 
the longitude calculation. 
 

 
The observation was post-meridian, so HA is subtracted from GHA. 
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Chapter 12   Lunars 
 
These days, with quartz watches and radio time-ticks, lunars are for the hard-
core celestial zealot.  This is a method whereby you can reset your 
untrustworthy chronometer if you are in the middle of the ocean (or anywhere) 
without friends or a short-wave radio.  Or perhaps you just want to feel 
challenged. 
Essentially the arc-distance between the moon’s limb and a heavenly object 
close to the ecliptic plane (such as a planet) is measured.  Since the arc distance 
is changing with time relatively fast (~0.508 deg per hour), one can infer a 
particular time in UT to a particular arc distance.  The nautical almanac 
contains predictions for both objects, and so the arc distance between the two 
objects can be worked out as a function of time.  The almanac many years ago 
contained these functions, but stopped in 1907.  It must be done by calculation 
or by special lunar tables. 
Since the moon appears to orbit about the Earth once every 29 ½ days (27 1/3 
days in inertial space), the angular closing speed between the moon and a planet 
or star near the ecliptic plane, from our earthly point of view, is about 0.5 
arcminute per minute of time.  Practically speaking, between messy 
observations and even messier calculations, this means you won’t get any closer 
to the real time by a minute or so.  Still, that’s not bad, it just means you’ll have 
to make allowances in your longitude estimate to the tune of 15 · Cos(Lat) 
n.miles per minute of time error.  But you won’t know the error, so you’ll just 
have to assume something like 2 minutes of time. 
The tabular data in the almanac does not consider refraction or parallax, and so 
the observer will have to correct for it.  In order to do that, the observer must 
nearly simultaneously obtain the altitudes of both the moon and star (or planet) 
as well as the actual measured arc distance between the two.  Whew!  It helps to 
have two friends in the same boat with sextants.  It is possible that the errors 
will be small if you take three consecutive measurements within a few minutes, 
since the altitude measurements are for refraction and parallax corrections, which 
won’t change fast.  By small, I mean the time estimate may be off by several 
minutes per degree of altitude change.  A degree of altitude change at it’s worst 
will take 4 minutes (at the equator).  But if the measurements are taken with the 
objects near the meridian line, you may have quite a bit of time to make 
measurements sequentially.  In fact, one can measure sequentially and correct 
the altitude measurements to time coincide with the arc distance measurement, 
a sort of ‘running fix’ correction on altitude. 
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If the time difference between the arc measurement and altitude measurement 

is δδδδT minutes of time, then add this increment to the altitude measurement: 
 

 δδδδH = 15 · [-Cos(LAT) · Cos(DEC) · Sin(LHA)/Cos(Ho)] · δ δ δ δT arcminutes 
 

where δδδδT = Tarc – Taltitude in minutes of time.  Tarc refers to the time you 
took the arc distance measurement, and Taltitude is the time you took the 
altitude measurement.  The absolute time is not important; rather the time 
difference is what should be accurate.  Since there are 2 altitude measurements, 

there will be a δδδδHstar, and δδδδHmoon increment based on time increments 

δδδδTstar, δδδδTmoon. 
LAT is your latitude, DEC is the declination of the observed object, LHA is 
your best guess at the local hour angle for the object, and Ho is the observed 
altitude for the object (Hs + SD is close enough).  This way, the parallax and 
refraction corrections will be identical had you done simultaneous 
measurements. 
When the measured arc distance Ds is corrected for index error, refraction, and 
semi-diameter, it is referred to the apparent arc distance Da.  When final 
corrections are made for parallax, the resulting number is the arc distance as 
seen from an observer at the Earth’s center.  That final arc distance is 
designated as Dcleared and the entire procedure is known as clearing the lunar 
distance.  The equation for Dcleared presented here was first published in 1856 
by J.R. Young, although I derived the exact same equation independently when 
approaching the problem. 
 
The case presented is for when you don’t know the exact time and you have 
made the three necessary measurements as though you were doing it for real.  
Besides, it’s fun.  Well, sort of.  This entire task is simplified if you have a 
computer and use MathCad software to write and evaluate the equations.  By 
the way, good luck. Oh, as far as sequencing the observations to minimize 
errors if you don’t feel like making the ‘running fix’ corrections, do this: 
1) measure the arc distance first 
2) measure the altitude of the most east/west next, quickly 
3) measure the altitude of the southern/northern most object last 

The objects farthest away from meridian passage change altitude the quickest 
and should be measured soonest after the arc distance measurement. 
 
There is a second method using one measurement and an assumed position.  
Here the method assumes that the latitude assumed is very accurate, but the 
longitude is as far off as the chronometer.  Employed best by computer. 
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--------------------------------- Clearing the distance from a  lunar observation  ---------------------------------------

IC Index Error Correction, degrees
Change all angle data into
decimal degrees

h eye Eye Height above seal level, meters

Hs star Measured Altitude of star or planet with Sextant Scale, deg

Hs moon Measured Altitude of the Moon with Sextant Scale, deg

Measured arc distance from Lunar limb to star or planet center
 with Sextant Scale, deg

Ds

UT s Your imperfect clock time noted at the observation of Ds, convert to decimal hours

sgn limbH When measuring altitude, lower limb is +1.  upper limb is -1

sgn limbD When measuring arc distance, near limb is +1.  far limb is -1

HP Horizontal Parallax HP,  from the nautical almanac, degrees

SD moon  = 0.2724 HP.... Lunar semi-diameter, degrees

From this table, determine the
refraction correction for the star and 
the moon

Record values for:

R star

R moonConvert the dip and refraction corrections to decimal degrees !!
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The 2nd method with one measurement (the arc distance) will calculate the 
altitudes based on the assumed position and imperfect chronometer reading.  
With the new corrected time, you can also correct the assumed longitude, and 
iterate once or twice more with the better time and longitude results.  The basic 
assumption is that the latitude is more accurate.
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Derivation of the equations used in clearing the lunar distance 
 
Law of Sines:       sin(a)/sin(A) = sin(b)/sin(B) = sin(c)/sin(C)  
 
Law of Cosines:   cos(a) = cos(b) · cos(c) + sin(b) · sin(c) · cos(A) 
 
(these laws are for spherical trigonometry; there are similar ones for plane trig) 
 
Useful identities: 
sin(α) = cos(90˚- α) 
cos(α) = sin(90˚- α) 
 
Law of Cosines in terms of co-angles: 
sin(90-a) = sin(90-b) · sin(90-c) + cos(90-b) · cos(90-c) · cos(A) 
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s = Hastar  S = Hostar  m = Hamoon  M = Homoon 
 
cos( ) sin( ) sin( ) cos( ) cos( ) cos( )

cos( ) sin( ) sin( ) cos( ) cos( ) cos( )

d s m s m

D S M S M

δ

δ

= ⋅ + ⋅ ⋅

= ⋅ + ⋅ ⋅
 

 

Rearrange cos(d): 
cos( ) sin( ) sin( )

cos( )
cos( ) cos( )

d s m

s m
δ

− ⋅
=

⋅
 

 
Now substitute into cos(D): 

cos( ) sin( ) sin( )
cos( ) sin( ) sin( ) cos( ) cos( )

cos( ) cos( )

d s m
D S M S M

s m

 − ⋅
= ⋅ + ⋅ ⋅  

⋅ 
 

Rearrange: 

( )
cos( ) cos( )

cos( ) sin( ) sin( ) cos( ) sin( ) sin( )
cos( ) cos( )

S M
D S M d s m

s m

 ⋅
= ⋅ + − ⋅ ⋅  

⋅ 
 

But using the trig identity: 
sin( ) sin( ) cos( )a b a b⋅ = − +  

 
And substituting this definition: 

cos( ) cos( )

cos( ) cos( )
ratio

S M
C

s m

 ⋅
=  

⋅ 
 

 

( )cos( ) cos( ) cos( ) cos( )
ratio

D d s m C S M= + + ⋅ − +  

 

( )cos( ) cos( ) cos( )
ratio

D arcCos d s m C S M= + + ⋅ − +    

 
The key to the problem is to realize that the parallax and refraction corrections 

only change the altitudes, not the ‘wedge angle’  δ.   When the corrections are 
applied, and using the law of cosines, the equation with s, m can be related to S, 

M with the common angle δ.  Even though refraction corrections are negative, 
the picture is drawn in the positive direction to establish a consistent sign 
convention.   



96 
 

Chapter 13  Coastal Navigation Using the Sextant 
 
Early in this book a surveyor’s technique was mentioned, and it is useful in 
costal navigation where the relative angle between the observer and 3 identified 
costal objects are measured.  This is the 3-arm protractor technique (3-point 
resection in surveyor’s tech-speak), and will be described in detail. 
A wonderful property of a simple circular arc with 2 end points is that a line 
drawn from one end point to anywhere on the arc back to the other end point, 
is the same angle as any other line similarly drawn to another point on the arc. 
 
If you are an observer measuring the relative angle between two known objects 
on the map, there will exist one unique circle of position where anyone on that 
arc will measure the same angle between the two known coastal objects.  
Include another observation for a third coastal object and make a second angle 
measurement.   Take for example points A and B on the map (maybe they are 
water towers or prominent points).  An observer measures the relative angle ‘a’ 
between them using the sextant held sideways.  Then the observer measures an 
angle ‘b’ between points B and C (or A and C).  The navigator then constructs 
the two arcs on the map, and where they cross is the position fix.  For any arc, 
if D is the distance between A and B, then the circle’s radius R: 
R = 0.25 · D · [tan(a/2) + 1 / tan(a/2)] 
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Constructing the arcs by graphical means 
 

The first step is to draw the baseline 
between points A and B.  Recalling how to 
draw perpendicular bisectors from middle 
school geometry using a bow compass, do 
so for the baseline. 
 
 
 
 
 
 
 
 

After the bisector is constructed, use a 
protractor and measure an angle away 
from the baseline of (90-a/2) from point 
‘A’, if the measured angle with the sextant 
was ‘a’ degrees.  Where it intersects the 
bisector, call this point ‘X’. 

 
Then draw another perpendicular to split 
the line A-X, carrying this line until it 
intersects the first bisector.  Call this point 
‘Y’.  It represents the center point of the 
circle of position. 
 
 
 
 
 
 

 
Finally, using point Y as the center, use the 
bow compass to draw an arc by setting the 
radius to include either points A, B, or X.  This 
is the circle of position.  Repeat steps for 
drawing the circle of position for points B and 
C with included angle ‘b’.  Voila! 
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Appendix 1     Generalized Sight Reduction and Intercept Work Sheet 
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Appendix 2   Making Your Very Own Octant 
 
Frames for octants can be made from just about any clear wood.  In the case of 
the author’s octant, it was made from ¾ inch thick clear maple, and epoxied to 
form the fine-boned frame shown here.  The mirrors are indexed to their 
position using 3 brads, 2 along the bottom forming a horizontal line, and the 
third brad along the side to index side-to-side motion.  Brass shim stock cut 
into rectangles and formed over a round pencil produced the U-shaped mirror 
retaining springs.  One-inch long #4-40 screws and nuts are used to make a 3-
point adjustable platform for mirror alignment 

 
The arc degree scale and Vernier scale were drawn in a 2-D computer aided 
design program and printed out at 1:1 scale.  The laser and bubble jet printers 
of today are amazingly accurately.  The Vernier scale should not go edge to 
edge with the degree scale, but rather overlap it on a tapered ramp.  This means 
that you do not need to sand the wood edge perfectly arc-shaped, so only the 
degree scale needs to be placed with accuracy.  The Vernier scale is moved 
radially in and out until it lines up perfectly with the degree scale, only then is it 
glued to the index arm.
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Mirrors 
Surprisingly good mirrors can be found in craft stores, 2”x2” for about 25¢ 
each.  Terrible mirrors can be had at the dollar store out of compacts.  The 
quality can be surmised by tilting the mirror until you are seeing a small 
glancing reflection of something.  Ripples (slope errors) will be quite evident at 
these high reflection angles.  The ripples may be just in one direction, and so 
the mirror can be oriented on the sextant to minimize altitude distortions.  The 
next best is to order a second surface mirror (50mm square) from an optics 
house such as Edmunds Scientifics for about $4.  In their specialty house, you 
can order first surface mirrors for maybe $20.  The second surface mirrors are 
good enough for a homemade (and professional) sextant.  Removing the 
aluminized surface for the horizon mirror requires patience, and is best 
accomplished with a fixture to hold the mirror and a guide for the tool.  The 
back has a protective coating that must be removed to get to the reflective 
material.  For a tool, I use a very well sharpened/honed 1” wide wood chisel.  
The edges should be slightly rounded so as not to dig in.  Under no 
circumstances should you use a scotch-brite pad to remove the silvering, as it 
will scratch glass.  The silvering can best be removed with a metal polisher such 
as Brasso, using a soft cloth. 
 
Shades 
Shades for the sky and horizon filters can be made from welder’s mask 
replacement filter plates, available at welding supply houses for about $1.65.  
They cut out 99.9% of harmful UV and infrared heat as well as act as neutral 
density filters to reduce the over-all amount of visible light.  The welding 
shades are numbered 1 thru 16, 1 being the lightest and 16 the darkest.  Shades 
can be additive, that is a #5 shade plus a #6 shade is equivalent to a #11 shade.  
A #4 shade allows about 13% visible transmission, while a #5 allows around 
5%.  Shades equivalent to a commercial sextant (by unscientific methods) is 
approximately 14, 10, 4 for the sky filters and 8, 4 for the horizon filters. Most 
of these welder’s shades will turn the Sun green.  Replacement shade filter 
plates typically can be found for 4 thru 14.  Use a 5, a 10, and a 14, which 
would seem to cover all viewing situations without having to double-up on 
filters (the glass is not perfect, and more than one filter will distort the Sun’s 
image slightly).  A 4 and 6 for the horizon will give 4, 6, and 10.  The problem 
of contrast arises, a green sun disk on a green horizon.  But safety of your eyes 
is paramount, no sense of increasing chances of cataracts due to ultraviolet 
overexposure.  Buy the plates in a 2 by 4.25 inch size, and cut them in half to 
make 2 squares.  Now glass cutting these thick plates is no laughing matter.  I 
have found that if you score lines with a handheld glass cutter on the front and 
back (and edges too) so that the lines are right over each other, you stand a 
much better chance of a successful cut.  This will require practice… 
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Springs 
Torsion springs to hold the mirrors in place can be easily made by wrapping 
thin (0.015”) music wire around larger diameter music wire or brad nails.  Leaf 
type springs can be cut out from 0.010” brass sheet stock or tin can lids, and 
wrapped around a pencil to get a ‘U’ shape. 
 
Sighting telescope 
A simple Galilean telescope can be made with a convex lens for the objective 
lens, and a concave lens for the eyepiece.  The image will be upright, and the 
magnification need not be greater than 3.  The convex lens has a positive focal 
length (FL1), while the concave lens has a negative focal length (FL2).  The 
spacing ‘S’ between the lenses should be FL1+FL2, and the magnification ‘M’ 
is -FL1/FL2.  For example, if the objective lens has a focal length of 300mm 
and the eyepiece lens has a focal length of -150mm, then: 
Spacing S = FL1 + FL2 = 300 + (-150) = 150mm 
Magnification M = - (FL1/FL2) = -(300 / (-150)) = 2 
 
Edmunds Scientifics sells 38mm diameter lenses for about $3 to $4 each. 
The tubes can be made with a square cross section using basswood or thin 
hobby plywood.  
 

 
 
Paint the insides of the tube flat black.  The baffles are used to keep stray light 
from glaring up the insides of the tube, which then reflect into the eyepiece.  
These baffles effectively trap the unwanted light.  Generally speaking, the more 
baffles, the better the image contrast. 
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Photos of the Octant 
 
Making of the telescope  Horizon mirror and mount 
 

 
 
The completed Octant 
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Appendix 3    On-Line Resources for Celestial Navigation 
 
Star Path navigational school 
http://www.starpath.com/resources/cellinks.htm 
 
Celestaire 
http://celestaire.com/catalog/ 
 
On-line nautical almanac 
http://www.tecepe.com.br/scripts/AlmanacPagesISAPI.isa 
 
US Naval Observatory 
http://aa.usno.navy.mil/data/docs/celnavtable.html 
 
Celestial navigation net- good all around source 
http://www.celestialnavigation.net/index.html 
 
A short guide to celestial navigation and freeware 
http://home.t-online.de/home/h.umland/index.htm 
 
Official UTC time 
http://nist.time.gov/timezone.cgi?UTC/s/0/java 
 
International Earth Rotation Service, gives delta T for Ephemeris Time 
http://maia.usno.navy.mil/ 
 
Edmunds Scientifics, supplier of mirrors and lenses 
http://www.scientificsonline.com/ 
 
Edmund Optics, higher grade of optics 
http://www.edmundoptics.com/catalog/ 
 
American Science and Surplus, with all sorts of spare optical stuff 
http://www.sciplus.com/ 
 
My web site:  www.teacupnavigation.net 
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Appendix 4   S-Tables 
 

Celestial Navigation via the S-Tables 
 And Ageton’s Method 

 
 
 

By Teacup Navigation 
 

Rodger E. Farley 
 
 
 
 



106 
 

Contents 
 
Introduction 
 
Determining Local Hour Angle 
 
Individual Steps 
 
Work Sheets 
 
Tables 
 
 
 
 
 
 
 
 
 
 
 
All rights reserved. 
I assume no liabilities of any form from any party: Warning, user beware! 
This is for educational purposes only. 



107 
 

Introduction 
 
Ageton devised a method of dividing the navigational triangle into 2 
simpler right-angle triangles to solve.  Using the Ageton equations for 
calculated altitude and meridian angle, a step by step solution to the 
problem can be implemented using tables and simple addition/subtraction.  
Ageton reformulated his equations with secant and co-secant functions, but 
I have retained the original with sine, cosine.  The tables represent the log 
(base 10) of sine and cosine of angles, and then multiplied by -100 for ease. 
 
These are the basic Ageton’s equations: 
 
 

 
  
Corrected meridian angle then needs to be converted to true azimuth angle, 
Zn.
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Determining Local Hour Angle LHA 
 
North Lat is +, South Lat is - East Lon is +, West Lon is - 
 
 
The Nautical Almanac hourly tabular values of Greenwich Hour Angle 
(GHAhour)is corrected for minutes and seconds increments (Corr 

GHA) plus 
any hourly  variances v (Corr V for the minutes).  For stars GHA = SHA + 
GHAAries 
Hourly values of declination (DEChour) are corrected for minutes with 
hourly rate d (Corr d for the minutes).  Beware of using the correct sign 
[+/-] in rate d.  If the declinations are moving in a northerly direction, then 
the sign of d is positive (+) even if the declination is still southern.  If d is 
moving in a southerly direction (Dec becoming more southerly in the next 
hour) then d is negative (-), even if the declination is still northern. 
 

GHA = GHAhour + Corr 
GHA + Corr V 

DEC = DEChour + Corr 
d  

If DEC is N then it is +, if S, then DEC is - 
 
Using the correct sign (+/-) for longitude LON: 
LHA = GHA + LON 
If LHA > 360, then subtract 360. 
 
LHA is divided into two camps: post-meridian passage and pre-
meridian passage. Post meridian angles range from zero to 180 degrees ( 
0<LHA<180), and pre meridian angles range from 180 to 360 ( 
180<LHA<360).  For a computer program, pre-meridian LHAs need to 
be converted to a negative angle (-180<LHA<0) by subtracting 360 
from a pre-meridian angle(for example 276 is equivalent to - 84) . The 
tables and rules can handle both forms if you are careful! 
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Individual Steps 
 
In the following algorithm, the arrows with “tables” mean go to the S-
tables and look at the numbers in the columns.  In each column there are 2 
numbers side-by-side.  If the number sought is an S number, then the one 
in the same column next to it is a C number.  If you have an arrow with 
“tables/angle”, it means locate the given S number, and note the 
corresponding angle.  There are 4 choices of angle, but you will select from 
the 2 bold numbers, and the given rules will make it clear which of the two 
to use.  Also note that calculated altitude Hc is always less than 90 deg.  
 
1) With |LHA| in tables � S1 
2) With |DEC| in tables � S2, C2 
3) S3 = S1 + C2, in tables find corresponding C3 
4) S4 = S2 - C3, in tables corresponding angle = K 

K > 90 if LHA between 90 and 270  
5) K’ = |K - LAT x sign(DEC) |, in tables � C5 
6) S6 = C5 + C3, in tables � C6 
7) Also, in tables corresponding angle of S6 = Hc 
8) S7 = |S3 – C6|, in tables corresponding angle = Zo 
Choose the bold-faced angle greater than 90, unless LAT and DEC 
same name AND |K| > |LAT|, in which case choose the angle 
less than 90. 

  
Notes: 
A variable in straight brackets, for example |LHA|, means to take the 
absolute value of LHA. In that if it is negative, then make it positive.  If 
LHA = -12, then |LHA| = 12.  A greater-than sign is > and a less-than 
sign is < (K>90 means K greater than 90).  When there is a variable 
prefixed with sign(variable), it means determine the sign and assign it a +1 
value if it’s positive, or a -1 value if the sign of the number is negative. 
 
Converting Corrected Meridian angle Zo to true azimuth Zn 
Name of LAT to select N or S prefix.  For E or W suffix: 
If LHA pre-meridian (-180<LHA<0 or 180<LHA<360) then E 
If LHA post-meridian (0<LHA<180) then W 
 
NW: Zn = 360 - Zo NE: Zn = Zo 
SE: Zn = 180 - Zo  SW: Zn = Zo + 180 
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This is an example where the LHA was already figured from the GHA and 
assumed longitude.  The assumed latitude is -40° 12’ S.  Just work it out 
line by line to see the genesis of the numbers with the corresponding 
tabular values.
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Using the S-Tables 
In this section I will provide examples of how to navigate the tables. 
In the tables, these are the equations tabulated to the arc minute: 
If x is the angle, then S(x) = -100*log(sin(x)), and C(x) = -100*log(cos(x)).  
S(x) and C(x) are the S and C values associated with the angle x.  Why go to 
this trouble?  Because logarithms change multiplication into addition, and 
addition is much easier! 
 
If declination DEC is 20° 13’ S, that means DEC = -(20° 13’), and 
|DEC| = 20° 13’.  In the 
tables look up the bold-
faced degree 20 (S-Tables, 
P5).   That heading is on 
the top of the table which 
means the arc minutes to 
use are on the left hand side 
as indicated by the double 
arrows.  Go down to 
minute 13 and look across 
to the column for the 20 
deg.  That number (46.146) 
is the S number, and the 
one next to it in the same 
column is the C number 
(2.762).  If the number you were looking up was 110° 13’, then 2.762 
would be the S number, and 46.146 would be the C number.  Get it? 
 
Using the bottom row of numbers 
is equally easy.  If you are looking 
up 85° 5’, then 0.160 is the S 
number and 106.699 is the C 
number.  The bottom row of 
numbers means you use the right-
hand minutes. 
 
Follow the calculation steps from top to bottom, adding or subtracting 
where indicated.  For the values of K, Hc, and Zo you have “go 
backwards” thru the tables (an S value is given and you have to determine 
the corresponding angle).
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S-Tables, P1 
 
 180° 270° 181° 271° 182° 272° 183° 273° 184° 274°   

 0° 90° 1° 91° 2° 92° 3° 93° 4° 94°   

0’ 1000.000 0.000 175.815 0.007 145.718 0.026 128.120 0.060 115.642 0.106 60’ 

1 353.627 0.000 175.097 0.007 145.358 0.027 127.880 0.060 115.461 0.107 59 

2 323.524 0.000 174.391 0.007 145.001 0.027 127.641 0.061 115.282 0.108 58 

3 305.915 0.000 173.696 0.007 144.646 0.028 127.403 0.062 115.103 0.109 57 

4 293.421 0.000 173.012 0.008 144.295 0.028 127.166 0.062 114.925 0.109 56 

5 283.730 0.000 172.339 0.008 143.946 0.029 126.931 0.063 114.748 0.110 55 

6 275.812 0.000 171.676 0.008 143.600 0.029 126.697 0.064 114.571 0.111 54 

7 269.118 0.000 171.023 0.008 143.257 0.030 126.465 0.064 114.395 0.112 53 

8 263.318 0.000 170.379 0.008 142.916 0.030 126.233 0.065 114.220 0.113 52 

9 258.203 0.000 169.745 0.009 142.579 0.031 126.003 0.066 114.045 0.114 51 

10 253.627 0.000 169.121 0.009 142.243 0.031 125.774 0.066 113.872 0.115 50 

11 249.488 0.000 168.505 0.009 141.911 0.032 125.546 0.067 113.699 0.116 49 

12 245.709 0.000 167.897 0.010 141.581 0.032 125.320 0.068 113.526 0.117 48 

13 242.233 0.000 167.298 0.010 141.253 0.033 125.095 0.068 113.355 0.118 47 

14 239.015 0.000 166.708 0.010 140.928 0.033 124.870 0.069 113.184 0.119 46 

15 236.018 0.000 166.125 0.010 140.605 0.033 124.647 0.070 113.013 0.120 45 

16 233.216 0.000 165.550 0.011 140.285 0.034 124.425 0.071 112.844 0.121 44 

17 230.583 0.001 164.982 0.011 139.967 0.034 124.205 0.071 112.675 0.121 43 

18 228.100 0.001 164.422 0.011 139.651 0.035 123.985 0.072 112.506 0.122 42 

19 225.752 0.001 163.869 0.011 139.338 0.036 123.766 0.073 112.339 0.123 41 

20 223.525 0.001 163.322 0.012 139.027 0.036 123.549 0.074 112.172 0.124 40 

21 221.406 0.001 162.783 0.012 138.718 0.037 123.333 0.074 112.005 0.125 39 

22 219.385 0.001 162.250 0.012 138.411 0.037 123.117 0.075 111.839 0.126 38 

23 217.455 0.001 161.724 0.013 138.106 0.038 122.903 0.076 111.674 0.127 37 

24 215.607 0.001 161.204 0.013 137.804 0.038 122.690 0.077 111.510 0.128 36 

25 213.834 0.001 160.690 0.013 137.504 0.039 122.478 0.077 111.346 0.129 35 

26 212.131 0.001 160.182 0.014 137.205 0.039 122.267 0.078 111.183 0.130 34 

27 210.491 0.001 159.680 0.014 136.909 0.040 122.057 0.079 111.020 0.131 33 

28 208.912 0.001 159.184 0.014 136.615 0.040 121.848 0.080 110.858 0.132 32 

29 207.388 0.002 158.693 0.015 136.322 0.041 121.640 0.080 110.697 0.133 31 

30 205.916 0.002 158.208 0.015 136.032 0.041 121.433 0.081 110.536 0.134 30 

31 204.492 0.002 157.728 0.015 135.744 0.042 121.226 0.082 110.375 0.135 29 

32 203.113 0.002 157.254 0.016 135.457 0.042 121.021 0.083 110.216 0.136 28 

33 201.777 0.002 156.784 0.016 135.173 0.043 120.817 0.083 110.057 0.137 27 

34 200.480 0.002 156.320 0.016 134.890 0.044 120.614 0.084 109.898 0.138 26 

35 199.221 0.002 155.861 0.017 134.609 0.044 120.412 0.085 109.740 0.139 25 

36 197.998 0.002 155.406 0.017 134.330 0.045 120.211 0.086 109.583 0.140 24 

37 196.808 0.003 154.956 0.017 134.053 0.045 120.010 0.087 109.426 0.141 23 

38 195.650 0.003 154.511 0.018 133.777 0.046 119.811 0.087 109.270 0.142 22 

39 194.522 0.003 154.070 0.018 133.503 0.046 119.612 0.088 109.115 0.143 21 

40 193.422 0.003 153.634 0.018 133.231 0.047 119.415 0.089 108.960 0.144 20 

41 192.350 0.003 153.202 0.019 132.961 0.048 119.218 0.090 108.805 0.145 19 

42 191.304 0.003 152.774 0.019 132.692 0.048 119.022 0.091 108.651 0.146 18 

43 190.282 0.003 152.350 0.019 132.425 0.049 118.827 0.091 108.498 0.147 17 

44 189.283 0.004 151.931 0.020 132.160 0.049 118.633 0.092 108.345 0.148 16 

45 188.307 0.004 151.515 0.020 131.896 0.050 118.440 0.093 108.193 0.149 15 

46 187.353 0.004 151.104 0.021 131.633 0.051 118.248 0.094 108.041 0.150 14 

47 186.419 0.004 150.696 0.021 131.373 0.051 118.056 0.095 107.890 0.152 13 

48 185.505 0.004 150.292 0.021 131.114 0.052 117.866 0.096 107.739 0.153 12 

49 184.609 0.004 149.892 0.022 130.856 0.052 117.676 0.096 107.589 0.154 11 

50 183.732 0.005 149.496 0.022 130.600 0.053 117.487 0.097 107.439 0.155 10 

51 182.872 0.005 149.103 0.023 130.346 0.054 117.299 0.098 107.290 0.156 9 

52 182.029 0.005 148.713 0.023 130.093 0.054 117.112 0.099 107.141 0.157 8 

53 181.202 0.005 148.327 0.023 129.841 0.055 116.925 0.100 106.993 0.158 7 

54 180.390 0.005 147.945 0.024 129.591 0.056 116.739 0.101 106.846 0.159 6 

55 179.593 0.006 147.566 0.024 129.342 0.056 116.554 0.102 106.699 0.160 5 

56 178.811 0.006 147.190 0.025 129.095 0.057 116.370 0.102 106.552 0.161 4 

57 178.042 0.006 146.817 0.025 128.849 0.058 116.187 0.103 106.406 0.162 3 

58 177.287 0.006 146.448 0.026 128.605 0.058 116.004 0.104 106.260 0.163 2 

59 176.544 0.006 146.081 0.026 128.362 0.059 115.823 0.105 106.115 0.164 1 

60’ 175.815 0.007 145.718 0.026 128.120 0.060 115.642 0.106 105.970 0.166 0’ 

  179° 89° 178° 88° 177° 87° 176° 86° 175° 85° ����  

  359° 269° 358° 268° 357° 267° 356° 266° 355° 265° ����  
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S-Tables, P2 
 
  185° 275° 186° 276° 187° 277° 188° 278° 189° 279°   

  5° 95° 6° 96° 7° 97° 8° 98° 9° 99°   

0’ 105.970 0.166 98.077 0.239 91.411 0.325 85.645 0.425 80.567 0.538 60’ 

1 105.826 0.167 97.957 0.240 91.308 0.326 85.555 0.426 80.487 0.540 59 

2 105.683 0.168 97.837 0.241 91.205 0.328 85.465 0.428 80.408 0.542 58 

3 105.539 0.169 97.717 0.243 91.103 0.330 85.376 0.430 80.328 0.544 57 

4 105.397 0.170 97.598 0.244 91.001 0.331 85.286 0.432 80.249 0.546 56 

5 105.254 0.171 97.480 0.245 90.899 0.333 85.197 0.434 80.170 0.548 55 

6 105.113 0.172 97.361 0.247 90.798 0.334 85.109 0.435 80.091 0.550 54 

7 104.971 0.173 97.243 0.248 90.696 0.336 85.020 0.437 80.012 0.552 53 

8 104.830 0.175 97.126 0.249 90.595 0.337 84.931 0.439 79.933 0.554 52 

9 104.690 0.176 97.008 0.251 90.494 0.339 84.843 0.441 79.855 0.556 51 

10 104.550 0.177 96.891 0.252 90.394 0.341 84.755 0.443 79.777 0.558 50 

11 104.411 0.178 96.774 0.253 90.294 0.342 84.667 0.444 79.698 0.560 49 

12 104.272 0.179 96.658 0.255 90.193 0.344 84.579 0.446 79.620 0.562 48 

13 104.133 0.180 96.542 0.256 90.094 0.345 84.492 0.448 79.542 0.564 47 

14 103.995 0.181 96.426 0.258 89.994 0.347 84.404 0.450 79.465 0.566 46 

15 103.857 0.183 96.310 0.259 89.894 0.349 84.317 0.452 79.387 0.568 45 

16 103.720 0.184 96.195 0.260 89.795 0.350 84.230 0.454 79.309 0.571 44 

17 103.583 0.185 96.080 0.262 89.696 0.352 84.143 0.455 79.232 0.573 43 

18 103.447 0.186 95.966 0.263 89.598 0.353 84.056 0.457 79.155 0.575 42 

19 103.311 0.187 95.852 0.264 89.499 0.355 83.970 0.459 79.078 0.577 41 

20 103.175 0.188 95.738 0.266 89.401 0.357 83.884 0.461 79.001 0.579 40 

21 103.040 0.190 95.624 0.267 89.303 0.358 83.797 0.463 78.924 0.581 39 

22 102.905 0.191 95.510 0.269 89.205 0.360 83.712 0.465 78.847 0.583 38 

23 102.771 0.192 95.397 0.270 89.107 0.362 83.626 0.467 78.771 0.585 37 

24 102.637 0.193 95.285 0.272 89.010 0.363 83.540 0.468 78.695 0.587 36 

25 102.504 0.194 95.172 0.273 88.913 0.365 83.455 0.470 78.618 0.589 35 

26 102.371 0.196 95.060 0.274 88.816 0.367 83.369 0.472 78.542 0.591 34 

27 102.238 0.197 94.948 0.276 88.719 0.368 83.284 0.474 78.466 0.593 33 

28 102.106 0.198 94.836 0.277 88.623 0.370 83.199 0.476 78.390 0.596 32 

29 101.974 0.199 94.725 0.279 88.526 0.371 83.114 0.478 78.315 0.598 31 

30 101.843 0.200 94.614 0.280 88.430 0.373 83.030 0.480 78.239 0.600 30 

31 101.712 0.202 94.503 0.282 88.334 0.375 82.945 0.482 78.164 0.602 29 

32 101.581 0.203 94.393 0.283 88.239 0.376 82.861 0.483 78.088 0.604 28 

33 101.451 0.204 94.283 0.284 88.143 0.378 82.777 0.485 78.013 0.606 27 

34 101.321 0.205 94.173 0.286 88.048 0.380 82.693 0.487 77.938 0.608 26 

35 101.192 0.207 94.063 0.287 87.953 0.382 82.609 0.489 77.863 0.610 25 

36 101.063 0.208 93.954 0.289 87.858 0.383 82.526 0.491 77.789 0.612 24 

37 100.934 0.209 93.845 0.290 87.764 0.385 82.442 0.493 77.714 0.615 23 

38 100.806 0.210 93.736 0.292 87.669 0.387 82.359 0.495 77.639 0.617 22 

39 100.678 0.211 93.628 0.293 87.575 0.388 82.276 0.497 77.565 0.619 21 

40 100.550 0.213 93.519 0.295 87.481 0.390 82.193 0.499 77.491 0.621 20 

41 100.423 0.214 93.412 0.296 87.388 0.392 82.110 0.501 77.417 0.623 19 

42 100.296 0.215 93.304 0.298 87.294 0.393 82.027 0.503 77.343 0.625 18 

43 100.170 0.217 93.196 0.299 87.201 0.395 81.945 0.505 77.269 0.628 17 

44 100.044 0.218 93.089 0.301 87.108 0.397 81.863 0.506 77.195 0.630 16 

45 99.918 0.219 92.982 0.302 87.015 0.399 81.780 0.508 77.122 0.632 15 

46 99.793 0.220 92.876 0.304 86.922 0.400 81.698 0.510 77.048 0.634 14 

47 99.668 0.222 92.769 0.305 86.829 0.402 81.617 0.512 76.975 0.636 13 

48 99.544 0.223 92.663 0.307 86.737 0.404 81.535 0.514 76.902 0.638 12 

49 99.420 0.224 92.558 0.308 86.645 0.405 81.453 0.516 76.829 0.641 11 

50 99.296 0.225 92.452 0.310 86.553 0.407 81.372 0.518 76.756 0.643 10 

51 99.172 0.227 92.347 0.311 86.461 0.409 81.291 0.520 76.683 0.645 9 

52 99.049 0.228 92.242 0.313 86.370 0.411 81.210 0.522 76.610 0.647 8 

53 98.926 0.229 92.137 0.314 86.278 0.412 81.129 0.524 76.538 0.649 7 

54 98.804 0.231 92.032 0.316 86.187 0.414 81.048 0.526 76.465 0.652 6 

55 98.682 0.232 91.928 0.317 86.096 0.416 80.967 0.528 76.393 0.654 5 

56 98.560 0.233 91.824 0.319 86.006 0.418 80.887 0.530 76.321 0.656 4 

57 98.439 0.235 91.720 0.320 85.915 0.419 80.807 0.532 76.249 0.658 3 

58 98.318 0.236 91.617 0.322 85.825 0.421 80.727 0.534 76.177 0.660 2 

59 98.197 0.237 91.514 0.323 85.734 0.423 80.647 0.536 76.105 0.663 1 

60’ 98.077 0.239 91.411 0.325 85.645 0.425 80.567 0.538 76.033 0.665 0’ 

  174° 84° 173° 83° 172° 82° 171° 81° 170° 80° ����  

  354° 264° 353° 263° 352° 262° 351° 261° 350° 260° ����  
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S-Tables, P3 
 
  190° 280° 191° 281° 192° 282° 193° 283° 194° 284°   

  10° 100° 11° 101° 12° 102° 13° 103° 14° 104°   

0’ 76.033 0.665 71.940 0.805 68.212 0.960 64.791 1.128 61.633 1.310 60’ 

1 75.961 0.667 71.875 0.808 68.153 0.962 64.737 1.131 61.582 1.313 59 

2 75.890 0.669 71.810 0.810 68.093 0.965 64.682 1.133 61.531 1.316 58 

3 75.819 0.672 71.746 0.813 68.034 0.968 64.627 1.136 61.481 1.319 57 

4 75.747 0.674 71.681 0.815 67.975 0.970 64.573 1.139 61.430 1.322 56 

5 75.676 0.676 71.616 0.818 67.916 0.973 64.519 1.142 61.380 1.325 55 

6 75.605 0.678 71.552 0.820 67.857 0.976 64.464 1.145 61.330 1.329 54 

7 75.534 0.681 71.488 0.823 67.798 0.978 64.410 1.148 61.279 1.332 53 

8 75.464 0.683 71.423 0.825 67.739 0.981 64.356 1.151 61.229 1.335 52 

9 75.393 0.685 71.359 0.828 67.681 0.984 64.302 1.154 61.179 1.338 51 

10 75.323 0.687 71.295 0.830 67.622 0.987 64.248 1.157 61.129 1.341 50 

11 75.252 0.690 71.231 0.833 67.563 0.989 64.194 1.160 61.079 1.344 49 

12 75.182 0.692 71.167 0.835 67.505 0.992 64.140 1.163 61.029 1.348 48 

13 75.112 0.694 71.104 0.838 67.447 0.995 64.086 1.166 60.979 1.351 47 

14 75.042 0.696 71.040 0.840 67.388 0.998 64.032 1.169 60.929 1.354 46 

15 74.972 0.699 70.976 0.843 67.330 1.000 63.979 1.172 60.879 1.357 45 

16 74.902 0.701 70.913 0.845 67.272 1.003 63.925 1.175 60.830 1.360 44 

17 74.832 0.703 70.850 0.848 67.214 1.006 63.871 1.178 60.780 1.364 43 

18 74.763 0.706 70.786 0.850 67.156 1.009 63.818 1.181 60.731 1.367 42 

19 74.693 0.708 70.723 0.853 67.098 1.011 63.764 1.184 60.681 1.370 41 

20 74.624 0.710 70.660 0.855 67.040 1.014 63.711 1.187 60.632 1.373 40 

21 74.555 0.712 70.597 0.858 66.982 1.017 63.658 1.190 60.582 1.377 39 

22 74.486 0.715 70.534 0.860 66.925 1.020 63.605 1.193 60.533 1.380 38 

23 74.417 0.717 70.471 0.863 66.867 1.022 63.552 1.196 60.483 1.383 37 

24 74.348 0.719 70.409 0.865 66.810 1.025 63.498 1.199 60.434 1.386 36 

25 74.279 0.722 70.346 0.868 66.752 1.028 63.445 1.202 60.385 1.390 35 

26 74.210 0.724 70.284 0.870 66.695 1.031 63.393 1.205 60.336 1.393 34 

27 74.142 0.726 70.221 0.873 66.638 1.033 63.340 1.208 60.287 1.396 33 

28 74.073 0.729 70.159 0.876 66.580 1.036 63.287 1.211 60.238 1.399 32 

29 74.005 0.731 70.097 0.878 66.523 1.039 63.234 1.214 60.189 1.403 31 

30 73.937 0.733 70.035 0.881 66.466 1.042 63.182 1.217 60.140 1.406 30 

31 73.869 0.736 69.972 0.883 66.409 1.045 63.129 1.220 60.091 1.409 29 

32 73.801 0.738 69.911 0.886 66.353 1.047 63.076 1.223 60.042 1.412 28 

33 73.733 0.740 69.849 0.888 66.296 1.050 63.024 1.226 59.994 1.416 27 

34 73.665 0.743 69.787 0.891 66.239 1.053 62.972 1.229 59.945 1.419 26 

35 73.597 0.745 69.725 0.894 66.182 1.056 62.919 1.232 59.897 1.422 25 

36 73.530 0.748 69.664 0.896 66.126 1.059 62.867 1.235 59.848 1.426 24 

37 73.462 0.750 69.602 0.899 66.069 1.062 62.815 1.238 59.800 1.429 23 

38 73.395 0.752 69.541 0.901 66.013 1.064 62.763 1.241 59.751 1.432 22 

39 73.328 0.755 69.479 0.904 65.957 1.067 62.711 1.244 59.703 1.435 21 

40 73.261 0.757 69.418 0.907 65.900 1.070 62.659 1.247 59.654 1.439 20 

41 73.194 0.759 69.357 0.909 65.844 1.073 62.607 1.250 59.606 1.442 19 

42 73.127 0.762 69.296 0.912 65.788 1.076 62.555 1.254 59.558 1.445 18 

43 73.060 0.764 69.235 0.914 65.732 1.079 62.503 1.257 59.510 1.449 17 

44 72.993 0.767 69.174 0.917 65.676 1.081 62.451 1.260 59.462 1.452 16 

45 72.927 0.769 69.113 0.920 65.620 1.084 62.400 1.263 59.414 1.455 15 

46 72.860 0.771 69.053 0.922 65.565 1.087 62.348 1.266 59.366 1.459 14 

47 72.794 0.774 68.992 0.925 65.509 1.090 62.297 1.269 59.318 1.462 13 

48 72.727 0.776 68.932 0.928 65.453 1.093 62.245 1.272 59.270 1.465 12 

49 72.661 0.779 68.871 0.930 65.398 1.096 62.194 1.275 59.222 1.469 11 

50 72.595 0.781 68.811 0.933 65.342 1.099 62.142 1.278 59.175 1.472 10 

51 72.529 0.783 68.751 0.936 65.287 1.102 62.091 1.281 59.127 1.475 9 

52 72.463 0.786 68.690 0.938 65.231 1.104 62.040 1.285 59.079 1.479 8 

53 72.398 0.788 68.630 0.941 65.176 1.107 61.989 1.288 59.032 1.482 7 

54 72.332 0.791 68.570 0.944 65.121 1.110 61.938 1.291 58.984 1.485 6 

55 72.266 0.793 68.510 0.946 65.066 1.113 61.887 1.294 58.937 1.489 5 

56 72.201 0.796 68.451 0.949 65.011 1.116 61.836 1.297 58.889 1.492 4 

57 72.136 0.798 68.391 0.952 64.956 1.119 61.785 1.300 58.842 1.495 3 

58 72.070 0.800 68.331 0.954 64.901 1.122 61.734 1.303 58.795 1.499 2 

59 72.005 0.803 68.272 0.957 64.846 1.125 61.683 1.306 58.748 1.502 1 

60’ 71.940 0.805 68.212 0.960 64.791 1.128 61.633 1.310 58.700 1.506 0’ 

  169° 79° 168° 78° 167° 77° 166° 76° 165° 75° ����  

  349° 259° 348° 258° 347° 257° 346° 256° 345° 255° ����  
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S-Tables, P4 
 
  195° 285° 196° 286° 197° 287° 198° 288° 199° 289°   

 15° 105° 16° 106° 17° 107° 18° 108° 19° 109°   

0’ 58.700 1.506 55.966 1.716 53.407 1.940 51.002 2.179 48.736 2.433 60’ 

1 58.653 1.509 55.922 1.719 53.365 1.944 50.963 2.183 48.699 2.437 59 

2 58.606 1.512 55.878 1.723 53.324 1.948 50.924 2.188 48.663 2.442 58 

3 58.559 1.516 55.834 1.727 53.283 1.952 50.885 2.192 48.626 2.446 57 

4 58.512 1.519 55.790 1.730 53.242 1.956 50.847 2.196 48.589 2.450 56 

5 58.465 1.523 55.747 1.734 53.200 1.960 50.808 2.200 48.553 2.455 55 

6 58.419 1.526 55.703 1.738 53.159 1.964 50.769 2.204 48.516 2.459 54 

7 58.372 1.529 55.659 1.741 53.118 1.967 50.731 2.208 48.480 2.464 53 

8 58.325 1.533 55.615 1.745 53.077 1.971 50.692 2.212 48.443 2.468 52 

9 58.278 1.536 55.572 1.749 53.036 1.975 50.653 2.216 48.407 2.472 51 

10 58.232 1.540 55.528 1.752 52.995 1.979 50.615 2.221 48.371 2.477 50 

11 58.185 1.543 55.485 1.756 52.955 1.983 50.576 2.225 48.334 2.481 49 

12 58.139 1.547 55.441 1.760 52.914 1.987 50.538 2.229 48.298 2.485 48 

13 58.092 1.550 55.398 1.763 52.873 1.991 50.500 2.233 48.262 2.490 47 

14 58.046 1.553 55.354 1.767 52.832 1.995 50.461 2.237 48.226 2.494 46 

15 57.999 1.557 55.311 1.771 52.791 1.999 50.423 2.241 48.189 2.499 45 

16 57.953 1.560 55.267 1.774 52.751 2.003 50.385 2.246 48.153 2.503 44 

17 57.907 1.564 55.224 1.778 52.710 2.007 50.346 2.250 48.117 2.508 43 

18 57.861 1.567 55.181 1.782 52.670 2.011 50.308 2.254 48.081 2.512 42 

19 57.814 1.571 55.138 1.785 52.629 2.014 50.270 2.258 48.045 2.516 41 

20 57.768 1.574 55.095 1.789 52.589 2.018 50.232 2.262 48.009 2.521 40 

21 57.722 1.578 55.052 1.793 52.548 2.022 50.194 2.266 47.973 2.525 39 

22 57.676 1.581 55.009 1.796 52.508 2.026 50.156 2.271 47.937 2.530 38 

23 57.630 1.585 54.966 1.800 52.467 2.030 50.118 2.275 47.901 2.534 37 

24 57.584 1.588 54.923 1.804 52.427 2.034 50.080 2.279 47.865 2.539 36 

25 57.539 1.591 54.880 1.808 52.387 2.038 50.042 2.283 47.829 2.543 35 

26 57.493 1.595 54.837 1.811 52.346 2.042 50.004 2.287 47.793 2.547 34 

27 57.447 1.598 54.794 1.815 52.306 2.046 49.966 2.292 47.758 2.552 33 

28 57.401 1.602 54.751 1.819 52.266 2.050 49.928 2.296 47.722 2.556 32 

29 57.356 1.605 54.709 1.823 52.226 2.054 49.890 2.300 47.686 2.561 31 

30 57.310 1.609 54.666 1.826 52.186 2.058 49.852 2.304 47.651 2.565 30 

31 57.265 1.612 54.623 1.830 52.146 2.062 49.815 2.309 47.615 2.570 29 

32 57.219 1.616 54.581 1.834 52.106 2.066 49.777 2.313 47.579 2.574 28 

33 57.174 1.619 54.538 1.838 52.066 2.070 49.739 2.317 47.544 2.579 27 

34 57.128 1.623 54.496 1.841 52.026 2.074 49.702 2.321 47.508 2.583 26 

35 57.083 1.627 54.453 1.845 51.986 2.078 49.664 2.326 47.473 2.588 25 

36 57.038 1.630 54.411 1.849 51.946 2.082 49.627 2.330 47.437 2.592 24 

37 56.993 1.634 54.368 1.853 51.906 2.086 49.589 2.334 47.402 2.597 23 

38 56.947 1.637 54.326 1.856 51.867 2.090 49.552 2.338 47.366 2.601 22 

39 56.902 1.641 54.284 1.860 51.827 2.094 49.514 2.343 47.331 2.606 21 

40 56.857 1.644 54.242 1.864 51.787 2.098 49.477 2.347 47.295 2.610 20 

41 56.812 1.648 54.199 1.868 51.748 2.102 49.439 2.351 47.260 2.615 19 

42 56.767 1.651 54.157 1.871 51.708 2.106 49.402 2.355 47.225 2.619 18 

43 56.722 1.655 54.115 1.875 51.668 2.110 49.365 2.360 47.190 2.624 17 

44 56.677 1.658 54.073 1.879 51.629 2.114 49.327 2.364 47.154 2.628 16 

45 56.633 1.662 54.031 1.883 51.589 2.118 49.290 2.368 47.119 2.633 15 

46 56.588 1.666 53.989 1.887 51.550 2.122 49.253 2.372 47.084 2.637 14 

47 56.543 1.669 53.947 1.890 51.511 2.126 49.216 2.377 47.049 2.642 13 

48 56.498 1.673 53.905 1.894 51.471 2.130 49.179 2.381 47.014 2.647 12 

49 56.454 1.676 53.864 1.898 51.432 2.134 49.142 2.385 46.979 2.651 11 

50 56.409 1.680 53.822 1.902 51.393 2.139 49.104 2.390 46.944 2.656 10 

51 56.365 1.683 53.780 1.906 51.353 2.143 49.067 2.394 46.909 2.660 9 

52 56.320 1.687 53.738 1.910 51.314 2.147 49.030 2.398 46.874 2.665 8 

53 56.276 1.691 53.697 1.913 51.275 2.151 48.994 2.403 46.839 2.669 7 

54 56.231 1.694 53.655 1.917 51.236 2.155 48.957 2.407 46.804 2.674 6 

55 56.187 1.698 53.614 1.921 51.197 2.159 48.920 2.411 46.769 2.678 5 

56 56.143 1.701 53.572 1.925 51.158 2.163 48.883 2.416 46.734 2.683 4 

57 56.099 1.705 53.531 1.929 51.119 2.167 48.846 2.420 46.699 2.688 3 

58 56.054 1.709 53.489 1.933 51.080 2.171 48.809 2.424 46.664 2.692 2 

59 56.010 1.712 53.448 1.937 51.041 2.175 48.773 2.429 46.630 2.697 1 

60’ 55.966 1.716 53.407 1.940 51.002 2.179 48.736 2.433 46.595 2.701 0’ 

  164° 74° 163° 73° 162° 72° 161° 71° 160° 70° ����  

  344° 254° 343° 253° 342° 252° 341° 251° 340° 250° ����  
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S-Tables, P5 
 
  200° 290° 201° 291° 202° 292° 203° 293° 204° 294°   

  20° 110° 21° 111° 22° 112° 23° 113° 24° 114°   

0’ 46.595 2.701 44.567 2.985 42.642 3.283 40.812 3.597 39.069 3.927 60’ 

1 46.560 2.706 44.534 2.990 42.611 3.289 40.782 3.603 39.040 3.933 59 

2 46.526 2.711 44.501 2.995 42.580 3.294 40.753 3.608 39.012 3.938 58 

3 46.491 2.715 44.469 2.999 42.549 3.299 40.723 3.613 38.984 3.944 57 

4 46.456 2.720 44.436 3.004 42.518 3.304 40.693 3.619 38.955 3.950 56 

5 46.422 2.724 44.403 3.009 42.486 3.309 40.664 3.624 38.927 3.955 55 

6 46.387 2.729 44.370 3.014 42.455 3.314 40.634 3.630 38.899 3.961 54 

7 46.353 2.734 44.337 3.019 42.424 3.319 40.604 3.635 38.871 3.966 53 

8 46.318 2.738 44.305 3.024 42.393 3.324 40.575 3.640 38.842 3.972 52 

9 46.284 2.743 44.272 3.029 42.362 3.330 40.545 3.646 38.814 3.978 51 

10 46.249 2.748 44.239 3.034 42.331 3.335 40.516 3.651 38.786 3.983 50 

11 46.215 2.752 44.207 3.038 42.300 3.340 40.486 3.657 38.758 3.989 49 

12 46.181 2.757 44.174 3.043 42.269 3.345 40.457 3.662 38.730 3.995 48 

13 46.146 2.762 44.142 3.048 42.238 3.350 40.427 3.667 38.702 4.000 47 

14 46.112 2.766 44.109 3.053 42.207 3.355 40.398 3.673 38.674 4.006 46 

15 46.078 2.771 44.077 3.058 42.176 3.360 40.368 3.678 38.646 4.012 45 

16 46.044 2.776 44.044 3.063 42.146 3.366 40.339 3.684 38.618 4.018 44 

17 46.009 2.780 44.012 3.068 42.115 3.371 40.310 3.689 38.590 4.023 43 

18 45.975 2.785 43.979 3.073 42.084 3.376 40.280 3.695 38.562 4.029 42 

19 45.941 2.790 43.947 3.078 42.053 3.381 40.251 3.700 38.534 4.035 41 

20 45.907 2.794 43.915 3.083 42.022 3.386 40.222 3.706 38.506 4.040 40 

21 45.873 2.799 43.882 3.088 41.992 3.392 40.192 3.711 38.478 4.046 39 

22 45.839 2.804 43.850 3.093 41.961 3.397 40.163 3.716 38.450 4.052 38 

23 45.805 2.808 43.818 3.097 41.930 3.402 40.134 3.722 38.422 4.058 37 

24 45.771 2.813 43.785 3.102 41.900 3.407 40.105 3.727 38.394 4.063 36 

25 45.737 2.818 43.753 3.107 41.869 3.412 40.076 3.733 38.366 4.069 35 

26 45.703 2.822 43.721 3.112 41.838 3.418 40.046 3.738 38.338 4.075 34 

27 45.669 2.827 43.689 3.117 41.808 3.423 40.017 3.744 38.311 4.080 33 

28 45.635 2.832 43.657 3.122 41.777 3.428 39.988 3.749 38.283 4.086 32 

29 45.601 2.837 43.625 3.127 41.747 3.433 39.959 3.755 38.255 4.092 31 

30 45.568 2.841 43.592 3.132 41.716 3.438 39.930 3.760 38.227 4.098 30 

31 45.534 2.846 43.560 3.137 41.686 3.444 39.901 3.766 38.200 4.103 29 

32 45.500 2.851 43.528 3.142 41.655 3.449 39.872 3.771 38.172 4.109 28 

33 45.466 2.855 43.496 3.147 41.625 3.454 39.843 3.777 38.144 4.115 27 

34 45.433 2.860 43.464 3.152 41.594 3.459 39.814 3.782 38.117 4.121 26 

35 45.399 2.865 43.432 3.157 41.564 3.465 39.785 3.788 38.089 4.127 25 

36 45.365 2.870 43.401 3.162 41.534 3.470 39.756 3.793 38.061 4.132 24 

37 45.332 2.874 43.369 3.167 41.503 3.475 39.727 3.799 38.034 4.138 23 

38 45.298 2.879 43.337 3.172 41.473 3.480 39.698 3.804 38.006 4.144 22 

39 45.265 2.884 43.305 3.177 41.443 3.486 39.670 3.810 37.979 4.150 21 

40 45.231 2.889 43.273 3.182 41.412 3.491 39.641 3.815 37.951 4.155 20 

41 45.198 2.893 43.241 3.187 41.382 3.496 39.612 3.821 37.924 4.161 19 

42 45.164 2.898 43.210 3.192 41.352 3.502 39.583 3.826 37.896 4.167 18 

43 45.131 2.903 43.178 3.197 41.322 3.507 39.554 3.832 37.869 4.173 17 

44 45.097 2.908 43.146 3.202 41.292 3.512 39.526 3.838 37.841 4.179 16 

45 45.064 2.913 43.114 3.207 41.261 3.517 39.497 3.843 37.814 4.185 15 

46 45.031 2.917 43.083 3.212 41.231 3.523 39.468 3.849 37.787 4.190 14 

47 44.997 2.922 43.051 3.217 41.201 3.528 39.439 3.854 37.759 4.196 13 

48 44.964 2.927 43.020 3.222 41.171 3.533 39.411 3.860 37.732 4.202 12 

49 44.931 2.932 42.988 3.228 41.141 3.539 39.382 3.865 37.704 4.208 11 

50 44.898 2.937 42.956 3.233 41.111 3.544 39.354 3.871 37.677 4.214 10 

51 44.864 2.941 42.925 3.238 41.081 3.549 39.325 3.877 37.650 4.220 9 

52 44.831 2.946 42.893 3.243 41.051 3.555 39.296 3.882 37.623 4.225 8 

53 44.798 2.951 42.862 3.248 41.021 3.560 39.268 3.888 37.595 4.231 7 

54 44.765 2.956 42.831 3.253 40.991 3.565 39.239 3.893 37.568 4.237 6 

55 44.732 2.961 42.799 3.258 40.961 3.571 39.211 3.899 37.541 4.243 5 

56 44.699 2.965 42.768 3.263 40.931 3.576 39.182 3.905 37.514 4.249 4 

57 44.666 2.970 42.736 3.268 40.902 3.581 39.154 3.910 37.487 4.255 3 

58 44.633 2.975 42.705 3.273 40.872 3.587 39.125 3.916 37.459 4.261 2 

59 44.600 2.980 42.674 3.278 40.842 3.592 39.097 3.921 37.432 4.267 1 

60’ 44.567 2.985 42.642 3.283 40.812 3.597 39.069 3.927 37.405 4.272 0’ 

  159° 69° 158° 68° 157° 67° 156° 66° 155° 65° ����  

  339° 249° 338° 248° 337° 247° 336° 246° 335° 245° ����  
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S-Tables, P6 
 
  205° 295° 206° 296° 207° 297° 208° 298° 209° 299°   

  25° 115° 26° 116° 27° 117° 28° 118° 29° 119°   

0’ 37.405 4.272 35.816 4.634 34.295 5.012 32.839 5.406 31.443 5.818 60’ 

1 37.378 4.278 35.790 4.640 34.271 5.018 32.815 5.413 31.420 5.825 59 

2 37.351 4.284 35.764 4.646 34.246 5.025 32.792 5.420 31.397 5.832 58 

3 37.324 4.290 35.738 4.652 34.221 5.031 32.768 5.427 31.375 5.839 57 

4 37.297 4.296 35.712 4.659 34.196 5.038 32.744 5.433 31.352 5.846 56 

5 37.270 4.302 35.687 4.665 34.172 5.044 32.721 5.440 31.329 5.853 55 

6 37.243 4.308 35.661 4.671 34.147 5.051 32.697 5.447 31.306 5.860 54 

7 37.216 4.314 35.635 4.677 34.122 5.057 32.673 5.454 31.284 5.867 53 

8 37.189 4.320 35.609 4.683 34.098 5.064 32.650 5.460 31.261 5.874 52 

9 37.162 4.326 35.583 4.690 34.073 5.070 32.626 5.467 31.238 5.881 51 

10 37.135 4.332 35.558 4.696 34.048 5.077 32.602 5.474 31.216 5.888 50 

11 37.108 4.337 35.532 4.702 34.024 5.083 32.579 5.481 31.193 5.895 49 

12 37.082 4.343 35.506 4.708 33.999 5.089 32.555 5.487 31.171 5.902 48 

13 37.055 4.349 35.481 4.714 33.975 5.096 32.532 5.494 31.148 5.910 47 

14 37.028 4.355 35.455 4.721 33.950 5.102 32.508 5.501 31.125 5.917 46 

15 37.001 4.361 35.429 4.727 33.925 5.109 32.485 5.508 31.103 5.924 45 

16 36.974 4.367 35.404 4.733 33.901 5.115 32.461 5.515 31.080 5.931 44 

17 36.948 4.373 35.378 4.739 33.876 5.122 32.438 5.521 31.058 5.938 43 

18 36.921 4.379 35.353 4.746 33.852 5.129 32.414 5.528 31.035 5.945 42 

19 36.894 4.385 35.327 4.752 33.827 5.135 32.391 5.535 31.013 5.952 41 

20 36.867 4.391 35.302 4.758 33.803 5.142 32.367 5.542 30.990 5.959 40 

21 36.841 4.397 35.276 4.764 33.779 5.148 32.344 5.549 30.968 5.966 39 

22 36.814 4.403 35.251 4.771 33.754 5.155 32.320 5.555 30.945 5.973 38 

23 36.787 4.409 35.225 4.777 33.730 5.161 32.297 5.562 30.923 5.980 37 

24 36.761 4.415 35.200 4.783 33.705 5.168 32.274 5.569 30.900 5.988 36 

25 36.734 4.421 35.174 4.789 33.681 5.174 32.250 5.576 30.878 5.995 35 

26 36.708 4.427 35.149 4.796 33.657 5.181 32.227 5.583 30.856 6.002 34 

27 36.681 4.433 35.123 4.802 33.632 5.187 32.204 5.590 30.833 6.009 33 

28 36.655 4.439 35.098 4.808 33.608 5.194 32.180 5.596 30.811 6.016 32 

29 36.628 4.445 35.073 4.815 33.584 5.201 32.157 5.603 30.788 6.023 31 

30 36.602 4.451 35.047 4.821 33.559 5.207 32.134 5.610 30.766 6.030 30 

31 36.575 4.457 35.022 4.827 33.535 5.214 32.110 5.617 30.744 6.037 29 

32 36.549 4.463 34.997 4.833 33.511 5.220 32.087 5.624 30.722 6.045 28 

33 36.522 4.469 34.971 4.840 33.487 5.227 32.064 5.631 30.699 6.052 27 

34 36.496 4.475 34.946 4.846 33.463 5.233 32.041 5.638 30.677 6.059 26 

35 36.469 4.481 34.921 4.852 33.438 5.240 32.018 5.644 30.655 6.066 25 

36 36.443 4.487 34.896 4.859 33.414 5.247 31.994 5.651 30.632 6.073 24 

37 36.417 4.493 34.870 4.865 33.390 5.253 31.971 5.658 30.610 6.080 23 

38 36.390 4.500 34.845 4.871 33.366 5.260 31.948 5.665 30.588 6.088 22 

39 36.364 4.506 34.820 4.878 33.342 5.266 31.925 5.672 30.566 6.095 21 

40 36.338 4.512 34.795 4.884 33.318 5.273 31.902 5.679 30.544 6.102 20 

41 36.311 4.518 34.770 4.890 33.294 5.280 31.879 5.686 30.521 6.109 19 

42 36.285 4.524 34.745 4.897 33.269 5.286 31.856 5.693 30.499 6.116 18 

43 36.259 4.530 34.719 4.903 33.245 5.293 31.833 5.700 30.477 6.124 17 

44 36.233 4.536 34.694 4.910 33.221 5.300 31.810 5.707 30.455 6.131 16 

45 36.207 4.542 34.669 4.916 33.197 5.306 31.787 5.714 30.433 6.138 15 

46 36.180 4.548 34.644 4.922 33.173 5.313 31.764 5.720 30.411 6.145 14 

47 36.154 4.554 34.619 4.929 33.149 5.320 31.741 5.727 30.389 6.153 13 

48 36.128 4.560 34.594 4.935 33.125 5.326 31.718 5.734 30.367 6.160 12 

49 36.102 4.566 34.569 4.941 33.101 5.333 31.695 5.741 30.345 6.167 11 

50 36.076 4.573 34.544 4.948 33.078 5.340 31.672 5.748 30.323 6.174 10 

51 36.050 4.579 34.519 4.954 33.054 5.346 31.649 5.755 30.301 6.181 9 

52 36.024 4.585 34.494 4.961 33.030 5.353 31.626 5.762 30.279 6.189 8 

53 35.998 4.591 34.469 4.967 33.006 5.360 31.603 5.769 30.257 6.196 7 

54 35.972 4.597 34.444 4.973 32.982 5.366 31.580 5.776 30.235 6.203 6 

55 35.946 4.603 34.420 4.980 32.958 5.373 31.557 5.783 30.213 6.211 5 

56 35.920 4.609 34.395 4.986 32.934 5.380 31.534 5.790 30.191 6.218 4 

57 35.894 4.616 34.370 4.993 32.910 5.386 31.511 5.797 30.169 6.225 3 

58 35.868 4.622 34.345 4.999 32.887 5.393 31.489 5.804 30.147 6.232 2 

59 35.842 4.628 34.320 5.005 32.863 5.400 31.466 5.811 30.125 6.240 1 

60’ 35.816 4.634 34.295 5.012 32.839 5.406 31.443 5.818 30.103 6.247 0’ 

  154° 64° 153° 63° 152° 62° 151° 61° 150° 60° ����  

  334° 244° 333° 243° 332° 242° 331° 241° 330° 240° ����  
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S-Tables, P7 
 
  210° 300° 211° 301° 212° 302° 213° 303° 214° 304°   

  30° 120° 31° 121° 32° 122° 33° 123° 34° 124°   

0’ 30.103 6.247 28.816 6.693 27.579 7.158 26.389 7.641 25.244 8.143 60’ 

1 30.081 6.254 28.795 6.701 27.559 7.166 26.370 7.649 25.225 8.151 59 

2 30.059 6.262 28.774 6.709 27.539 7.174 26.350 7.657 25.206 8.160 58 

3 30.037 6.269 28.753 6.716 27.518 7.182 26.331 7.665 25.188 8.168 57 

4 30.016 6.276 28.732 6.724 27.498 7.190 26.311 7.674 25.169 8.177 56 

5 29.994 6.283 28.711 6.731 27.478 7.197 26.292 7.682 25.150 8.185 55 

6 29.972 6.291 28.690 6.739 27.458 7.205 26.273 7.690 25.132 8.194 54 

7 29.950 6.298 28.669 6.747 27.438 7.213 26.253 7.698 25.113 8.202 53 

8 29.928 6.305 28.648 6.754 27.418 7.221 26.234 7.707 25.094 8.211 52 

9 29.907 6.313 28.627 6.762 27.398 7.229 26.215 7.715 25.076 8.219 51 

10 29.885 6.320 28.607 6.770 27.378 7.237 26.195 7.723 25.057 8.228 50 

11 29.863 6.327 28.586 6.777 27.357 7.245 26.176 7.731 25.039 8.237 49 

12 29.842 6.335 28.565 6.785 27.337 7.253 26.157 7.740 25.020 8.245 48 

13 29.820 6.342 28.544 6.793 27.317 7.261 26.137 7.748 25.001 8.254 47 

14 29.798 6.350 28.523 6.800 27.297 7.269 26.118 7.756 24.983 8.262 46 

15 29.776 6.357 28.502 6.808 27.277 7.277 26.099 7.764 24.964 8.271 45 

16 29.755 6.364 28.481 6.816 27.257 7.285 26.079 7.773 24.946 8.280 44 

17 29.733 6.372 28.461 6.823 27.237 7.293 26.060 7.781 24.927 8.288 43 

18 29.712 6.379 28.440 6.831 27.217 7.301 26.041 7.789 24.909 8.297 42 

19 29.690 6.386 28.419 6.839 27.197 7.309 26.022 7.798 24.890 8.305 41 

20 29.668 6.394 28.398 6.846 27.177 7.317 26.003 7.806 24.872 8.314 40 

21 29.647 6.401 28.378 6.854 27.157 7.325 25.983 7.814 24.853 8.323 39 

22 29.625 6.409 28.357 6.862 27.137 7.333 25.964 7.823 24.835 8.331 38 

23 29.604 6.416 28.336 6.869 27.118 7.341 25.945 7.831 24.816 8.340 37 

24 29.582 6.423 28.315 6.877 27.098 7.349 25.926 7.839 24.798 8.349 36 

25 29.561 6.431 28.295 6.885 27.078 7.357 25.907 7.848 24.779 8.357 35 

26 29.539 6.438 28.274 6.892 27.058 7.365 25.888 7.856 24.761 8.366 34 

27 29.518 6.446 28.253 6.900 27.038 7.373 25.868 7.864 24.742 8.375 33 

28 29.496 6.453 28.233 6.908 27.018 7.381 25.849 7.873 24.724 8.383 32 

29 29.475 6.461 28.212 6.916 26.998 7.389 25.830 7.881 24.706 8.392 31 

30 29.453 6.468 28.192 6.923 26.978 7.397 25.811 7.889 24.687 8.401 30 

31 29.432 6.475 28.171 6.931 26.959 7.405 25.792 7.898 24.669 8.409 29 

32 29.410 6.483 28.150 6.939 26.939 7.413 25.773 7.906 24.650 8.418 28 

33 29.389 6.490 28.130 6.947 26.919 7.421 25.754 7.914 24.632 8.427 27 

34 29.367 6.498 28.109 6.954 26.899 7.429 25.735 7.923 24.614 8.435 26 

35 29.346 6.505 28.089 6.962 26.879 7.437 25.716 7.931 24.595 8.444 25 

36 29.325 6.513 28.068 6.970 26.860 7.445 25.697 7.940 24.577 8.453 24 

37 29.303 6.520 28.048 6.978 26.840 7.454 25.678 7.948 24.559 8.462 23 

38 29.282 6.528 28.027 6.986 26.820 7.462 25.659 7.956 24.541 8.470 22 

39 29.261 6.535 28.007 6.993 26.800 7.470 25.640 7.965 24.522 8.479 21 

40 29.239 6.543 27.986 7.001 26.781 7.478 25.621 7.973 24.504 8.488 20 

41 29.218 6.550 27.966 7.009 26.761 7.486 25.602 7.982 24.486 8.496 19 

42 29.197 6.558 27.945 7.017 26.741 7.494 25.583 7.990 24.467 8.505 18 

43 29.176 6.565 27.925 7.024 26.722 7.502 25.564 7.998 24.449 8.514 17 

44 29.154 6.573 27.904 7.032 26.702 7.510 25.545 8.007 24.431 8.523 16 

45 29.133 6.580 27.884 7.040 26.682 7.518 25.526 8.015 24.413 8.531 15 

46 29.112 6.588 27.863 7.048 26.663 7.527 25.507 8.024 24.395 8.540 14 

47 29.091 6.595 27.843 7.056 26.643 7.535 25.488 8.032 24.376 8.549 13 

48 29.069 6.603 27.823 7.064 26.623 7.543 25.469 8.041 24.358 8.558 12 

49 29.048 6.610 27.802 7.071 26.604 7.551 25.451 8.049 24.340 8.567 11 

50 29.027 6.618 27.782 7.079 26.584 7.559 25.432 8.058 24.322 8.575 10 

51 29.006 6.625 27.762 7.087 26.565 7.567 25.413 8.066 24.304 8.584 9 

52 28.985 6.633 27.741 7.095 26.545 7.575 25.394 8.075 24.286 8.593 8 

53 28.964 6.640 27.721 7.103 26.526 7.584 25.375 8.083 24.267 8.602 7 

54 28.942 6.648 27.701 7.111 26.506 7.592 25.356 8.092 24.249 8.611 6 

55 28.921 6.656 27.680 7.119 26.487 7.600 25.338 8.100 24.231 8.619 5 

56 28.900 6.663 27.660 7.126 26.467 7.608 25.319 8.109 24.213 8.628 4 

57 28.879 6.671 27.640 7.134 26.448 7.616 25.300 8.117 24.195 8.637 3 

58 28.858 6.678 27.620 7.142 26.428 7.624 25.281 8.126 24.177 8.646 2 

59 28.837 6.686 27.599 7.150 26.409 7.633 25.263 8.134 24.159 8.655 1 

60’ 28.816 6.693 27.579 7.158 26.389 7.641 25.244 8.143 24.141 8.664 0’ 

  149° 59° 148° 58° 147° 57° 146° 56° 145° 55° ����  

  329° 239° 328° 238° 327° 237° 326° 236° 325° 235° ����  

 



121 
 

 
 
S-Tables, P8 
 
  215° 305° 216° 306° 217° 307° 218° 308° 219° 309°   

  35° 125° 36° 126° 37° 127° 38° 128° 39° 129°   

0’ 24.141 8.664 23.078 9.204 22.054 9.765 21.066 10.347 20.113 10.950 60’ 

1 24.123 8.672 23.061 9.213 22.037 9.775 21.050 10.357 20.097 10.960 59 

2 24.105 8.681 23.043 9.223 22.020 9.784 21.034 10.367 20.082 10.970 58 

3 24.087 8.690 23.026 9.232 22.003 9.794 21.017 10.376 20.066 10.980 57 

4 24.069 8.699 23.009 9.241 21.987 9.803 21.001 10.386 20.051 10.991 56 

5 24.051 8.708 22.991 9.250 21.970 9.813 20.985 10.396 20.035 11.001 55 

6 24.033 8.717 22.974 9.259 21.953 9.822 20.969 10.406 20.019 11.011 54 

7 24.015 8.726 22.957 9.269 21.937 9.832 20.953 10.416 20.004 11.021 53 

8 23.997 8.734 22.939 9.278 21.920 9.841 20.937 10.426 19.988 11.032 52 

9 23.979 8.743 22.922 9.287 21.903 9.851 20.921 10.436 19.973 11.042 51 

10 23.961 8.752 22.905 9.296 21.887 9.861 20.905 10.446 19.957 11.052 50 

11 23.943 8.761 22.888 9.306 21.870 9.870 20.889 10.456 19.942 11.063 49 

12 23.925 8.770 22.870 9.315 21.853 9.880 20.872 10.466 19.926 11.073 48 

13 23.907 8.779 22.853 9.324 21.837 9.889 20.856 10.476 19.911 11.083 47 

14 23.889 8.788 22.836 9.333 21.820 9.899 20.840 10.486 19.895 11.094 46 

15 23.872 8.797 22.819 9.343 21.803 9.909 20.824 10.495 19.880 11.104 45 

16 23.854 8.806 22.801 9.352 21.787 9.918 20.808 10.505 19.864 11.114 44 

17 23.836 8.815 22.784 9.361 21.770 9.928 20.792 10.515 19.849 11.125 43 

18 23.818 8.824 22.767 9.370 21.754 9.937 20.776 10.525 19.834 11.135 42 

19 23.800 8.833 22.750 9.380 21.737 9.947 20.760 10.535 19.818 11.145 41 

20 23.782 8.842 22.733 9.389 21.720 9.957 20.744 10.545 19.803 11.156 40 

21 23.764 8.851 22.715 9.398 21.704 9.966 20.728 10.555 19.787 11.166 39 

22 23.747 8.859 22.698 9.408 21.687 9.976 20.712 10.565 19.772 11.176 38 

23 23.729 8.868 22.681 9.417 21.671 9.986 20.696 10.575 19.756 11.187 37 

24 23.711 8.877 22.664 9.426 21.654 9.995 20.681 10.585 19.741 11.197 36 

25 23.693 8.886 22.647 9.435 21.638 10.005 20.665 10.595 19.726 11.207 35 

26 23.676 8.895 22.630 9.445 21.621 10.015 20.649 10.605 19.710 11.218 34 

27 23.658 8.904 22.613 9.454 21.605 10.024 20.633 10.615 19.695 11.228 33 

28 23.640 8.913 22.595 9.463 21.588 10.034 20.617 10.625 19.680 11.239 32 

29 23.622 8.922 22.578 9.473 21.572 10.044 20.601 10.635 19.664 11.249 31 

30 23.605 8.931 22.561 9.482 21.555 10.053 20.585 10.646 19.649 11.259 30 

31 23.587 8.940 22.544 9.491 21.539 10.063 20.569 10.656 19.634 11.270 29 

32 23.569 8.949 22.527 9.501 21.522 10.073 20.553 10.666 19.618 11.280 28 

33 23.552 8.958 22.510 9.510 21.506 10.082 20.537 10.676 19.603 11.291 27 

34 23.534 8.967 22.493 9.520 21.490 10.092 20.522 10.686 19.588 11.301 26 

35 23.516 8.977 22.476 9.529 21.473 10.102 20.506 10.696 19.572 11.312 25 

36 23.499 8.986 22.459 9.538 21.457 10.112 20.490 10.706 19.557 11.322 24 

37 23.481 8.995 22.442 9.548 21.440 10.121 20.474 10.716 19.542 11.332 23 

38 23.463 9.004 22.425 9.557 21.424 10.131 20.458 10.726 19.527 11.343 22 

39 23.446 9.013 22.408 9.566 21.408 10.141 20.443 10.736 19.511 11.353 21 

40 23.428 9.022 22.391 9.576 21.391 10.151 20.427 10.746 19.496 11.364 20 

41 23.410 9.031 22.374 9.585 21.375 10.160 20.411 10.756 19.481 11.374 19 

42 23.393 9.040 22.357 9.595 21.358 10.170 20.395 10.767 19.466 11.385 18 

43 23.375 9.049 22.340 9.604 21.342 10.180 20.379 10.777 19.451 11.395 17 

44 23.358 9.058 22.323 9.614 21.326 10.190 20.364 10.787 19.435 11.406 16 

45 23.340 9.067 22.306 9.623 21.309 10.199 20.348 10.797 19.420 11.416 15 

46 23.323 9.076 22.289 9.632 21.293 10.209 20.332 10.807 19.405 11.427 14 

47 23.305 9.085 22.273 9.642 21.277 10.219 20.316 10.817 19.390 11.437 13 

48 23.288 9.094 22.256 9.651 21.261 10.229 20.301 10.827 19.375 11.448 12 

49 23.270 9.104 22.239 9.661 21.244 10.239 20.285 10.838 19.359 11.458 11 

50 23.253 9.113 22.222 9.670 21.228 10.248 20.269 10.848 19.344 11.469 10 

51 23.235 9.122 22.205 9.680 21.212 10.258 20.254 10.858 19.329 11.479 9 

52 23.218 9.131 22.188 9.689 21.196 10.268 20.238 10.868 19.314 11.490 8 

53 23.200 9.140 22.171 9.699 21.179 10.278 20.222 10.878 19.299 11.501 7 

54 23.183 9.149 22.155 9.708 21.163 10.288 20.207 10.888 19.284 11.511 6 

55 23.165 9.158 22.138 9.718 21.147 10.297 20.191 10.899 19.269 11.522 5 

56 23.148 9.168 22.121 9.727 21.131 10.307 20.175 10.909 19.254 11.532 4 

57 23.130 9.177 22.104 9.737 21.114 10.317 20.160 10.919 19.238 11.543 3 

58 23.113 9.186 22.087 9.746 21.098 10.327 20.144 10.929 19.223 11.553 2 

59 23.096 9.195 22.070 9.756 21.082 10.337 20.128 10.939 19.208 11.564 1 

60’ 23.078 9.204 22.054 9.765 21.066 10.347 20.113 10.950 19.193 11.575 0’ 

  144° 54° 143° 53° 142° 52° 141° 51° 140° 50° ����  

  324° 234° 323° 233° 322° 232° 321° 231° 320° 230° ����  
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S-Tables, P9 
 
  220° 310° 221° 311° 222° 312° 223° 313° 224° 314°   

  40° 130° 41° 131° 42° 132° 43° 133° 44° 134°   

0’ 19.193 11.575 18.306 12.222 17.449 12.893 16.622 13.587 15.823 14.307 60’ 

1 19.178 11.585 18.291 12.233 17.435 12.904 16.608 13.599 15.810 14.319 59 

2 19.163 11.596 18.277 12.244 17.421 12.915 16.595 13.611 15.797 14.331 58 

3 19.148 11.606 18.262 12.255 17.407 12.927 16.581 13.623 15.784 14.343 57 

4 19.133 11.617 18.248 12.266 17.393 12.938 16.568 13.634 15.771 14.355 56 

5 19.118 11.628 18.233 12.277 17.379 12.950 16.554 13.646 15.758 14.368 55 

6 19.103 11.638 18.219 12.288 17.365 12.961 16.541 13.658 15.745 14.380 54 

7 19.088 11.649 18.204 12.299 17.351 12.972 16.527 13.670 15.732 14.392 53 

8 19.073 11.660 18.190 12.310 17.337 12.984 16.514 13.682 15.718 14.404 52 

9 19.058 11.670 18.175 12.321 17.323 12.995 16.500 13.694 15.705 14.417 51 

10 19.043 11.681 18.161 12.332 17.309 13.007 16.487 13.705 15.692 14.429 50 

11 19.028 11.692 18.146 12.343 17.295 13.018 16.473 13.717 15.679 14.441 49 

12 19.013 11.702 18.132 12.354 17.281 13.030 16.460 13.729 15.666 14.453 48 

13 18.998 11.713 18.118 12.365 17.267 13.041 16.446 13.741 15.653 14.466 47 

14 18.983 11.724 18.103 12.376 17.253 13.053 16.433 13.753 15.640 14.478 46 

15 18.968 11.734 18.089 12.387 17.239 13.064 16.419 13.765 15.628 14.490 45 

16 18.954 11.745 18.074 12.399 17.225 13.075 16.406 13.777 15.615 14.503 44 

17 18.939 11.756 18.060 12.410 17.212 13.087 16.393 13.788 15.602 14.515 43 

18 18.924 11.766 18.046 12.421 17.198 13.098 16.379 13.800 15.589 14.527 42 

19 18.909 11.777 18.031 12.432 17.184 13.110 16.366 13.812 15.576 14.540 41 

20 18.894 11.788 18.017 12.443 17.170 13.121 16.352 13.824 15.563 14.552 40 

21 18.879 11.799 18.002 12.454 17.156 13.133 16.339 13.836 15.550 14.564 39 

22 18.864 11.809 17.988 12.465 17.142 13.144 16.326 13.848 15.537 14.577 38 

23 18.849 11.820 17.974 12.476 17.128 13.156 16.312 13.860 15.524 14.589 37 

24 18.834 11.831 17.959 12.487 17.115 13.168 16.299 13.872 15.511 14.601 36 

25 18.820 11.842 17.945 12.499 17.101 13.179 16.285 13.884 15.498 14.614 35 

26 18.805 11.852 17.931 12.510 17.087 13.191 16.272 13.896 15.485 14.626 34 

27 18.790 11.863 17.916 12.521 17.073 13.202 16.259 13.908 15.472 14.639 33 

28 18.775 11.874 17.902 12.532 17.059 13.214 16.245 13.920 15.460 14.651 32 

29 18.760 11.885 17.888 12.543 17.045 13.225 16.232 13.932 15.447 14.663 31 

30 18.746 11.895 17.874 12.554 17.032 13.237 16.219 13.944 15.434 14.676 30 

31 18.731 11.906 17.859 12.566 17.018 13.248 16.206 13.956 15.421 14.688 29 

32 18.716 11.917 17.845 12.577 17.004 13.260 16.192 13.968 15.408 14.701 28 

33 18.701 11.928 17.831 12.588 16.990 13.272 16.179 13.980 15.395 14.713 27 

34 18.686 11.939 17.817 12.599 16.977 13.283 16.166 13.992 15.382 14.725 26 

35 18.672 11.949 17.802 12.610 16.963 13.295 16.152 14.004 15.370 14.738 25 

36 18.657 11.960 17.788 12.622 16.949 13.306 16.139 14.016 15.357 14.750 24 

37 18.642 11.971 17.774 12.633 16.935 13.318 16.126 14.028 15.344 14.763 23 

38 18.628 11.982 17.760 12.644 16.922 13.330 16.113 14.040 15.331 14.775 22 

39 18.613 11.993 17.745 12.655 16.908 13.341 16.099 14.052 15.318 14.788 21 

40 18.598 12.004 17.731 12.666 16.894 13.353 16.086 14.064 15.306 14.800 20 

41 18.583 12.014 17.717 12.678 16.881 13.365 16.073 14.076 15.293 14.813 19 

42 18.569 12.025 17.703 12.689 16.867 13.376 16.060 14.088 15.280 14.825 18 

43 18.554 12.036 17.689 12.700 16.853 13.388 16.046 14.100 15.267 14.838 17 

44 18.539 12.047 17.674 12.711 16.839 13.400 16.033 14.112 15.255 14.850 16 

45 18.525 12.058 17.660 12.723 16.826 13.411 16.020 14.124 15.242 14.863 15 

46 18.510 12.069 17.646 12.734 16.812 13.423 16.007 14.136 15.229 14.875 14 

47 18.495 12.080 17.632 12.745 16.798 13.435 15.994 14.149 15.216 14.888 13 

48 18.481 12.091 17.618 12.757 16.785 13.446 15.980 14.161 15.204 14.900 12 

49 18.466 12.102 17.604 12.768 16.771 13.458 15.967 14.173 15.191 14.913 11 

50 18.451 12.112 17.590 12.779 16.758 13.470 15.954 14.185 15.178 14.926 10 

51 18.437 12.123 17.576 12.791 16.744 13.481 15.941 14.197 15.166 14.938 9 

52 18.422 12.134 17.561 12.802 16.730 13.493 15.928 14.209 15.153 14.951 8 

53 18.408 12.145 17.547 12.813 16.717 13.505 15.915 14.221 15.140 14.963 7 

54 18.393 12.156 17.533 12.825 16.703 13.517 15.902 14.233 15.127 14.976 6 

55 18.379 12.167 17.519 12.836 16.690 13.528 15.888 14.246 15.115 14.988 5 

56 18.364 12.178 17.505 12.847 16.676 13.540 15.875 14.258 15.102 15.001 4 

57 18.349 12.189 17.491 12.859 16.662 13.552 15.862 14.270 15.089 15.014 3 

58 18.335 12.200 17.477 12.870 16.649 13.564 15.849 14.282 15.077 15.026 2 

59 18.320 12.211 17.463 12.881 16.635 13.575 15.836 14.294 15.064 15.039 1 

60’ 18.306 12.222 17.449 12.893 16.622 13.587 15.823 14.307 15.052 15.051 0’ 

  139° 49° 138° 48° 137° 47° 136° 46° 135° 45° ����  

  319° 229° 318° 228° 317° 227° 316° 226° 315° 225° ����  

 


