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Much is due to those who first broke the way to knowledge,
and left only to their successors the task of smoothing it.

Samuel Johnson

Preface

Why should anybody still practice celestial navigation in the era of electronics and GPS? One might as well ask why
some photographers still  develop  black-and-white photos in their  darkroom instead of  using a digital camera. The
answer  would be the same: because it is a noble art, and because it is rewarding. No doubt, a GPS navigator  is a
powerful tool, but  using it becomes routine very soon. In contrast,  celestial navigation is an intellectual challenge.
Finding your geographic position by means of astronomical observations requires knowledge, skillfulness, and critical
judgement. In other words, you  have to use your brains. Everyone who ever reduced a sight knows the thrill I am
talking about. The way is the goal.

It took centuries and generations of navigators, astronomers, geographers, mathematicians, and instrument makers to
develop the art and science of celestial navigation to its present level, and the knowledge thus accumulated is a treasure
that should be preserved. Moreover, celestial navigation gives us an insight into scientific thinking and creativeness in
the pre-electronic age. Last but not least, celestial navigation may be a highly appreciated alternative if a GPS receiver
happens to fail.

When I read my first book  on  navigation many years ago,  the chapter  on  celestial navigation with its fascinating
diagrams and formulas immediately caught my particular interest although I was a little intimidated by its complexity at
first. As I became more advanced, I realized that celestial navigation is not nearly as difficult as it seems to be at first
glance. Studying the literature, I found that many books, although packed with information, are more confusing than
enlightening, probably because most of them have been written by experts and for experts. On the other hand, many
publications written for beginners are designed like cookbooks, i. e., they contain step-by-step instructions but avoid
much of the theory.  In my opinion, one can not  really  comprehend celestial navigation and enjoy the beauty of  it
without knowing the mathematical background.

Since nothing really complied with my needs, I decided to write a compact manual for my personal use which had to
include the most important definitions, formulas, diagrams, and procedures. As time went by, the project gained its own
momentum, the book grew in size, and I started wondering if it might not be of interest to others as well. I contacted a
few scientific publishing houses, but they informed me politely that they considered my work as dispensable (“Who is
going to read this!”). I had forgotten that scientific publishing houses are run by marketing people, not by scientists.
Around the same time, I became interested in the internet, and I quickly found that it is the ideal medium to share one's
knowledge with others. Consequently, I set up my own web site to present my book to the public.

The style of my work may differ  from other books on this subject. This is probably due to my different perspective.
When I started the project, I was a newcomer to the world of navigation, but I had a background in natural sciences and
in scientific writing. From the very beginning, it has been my goal to provide accurate information in a structured and
comprehensible form. The reader may judge whether this attempt has been successful.

More people than I expected are interested in celestial navigation, and I  would like to thank my readers for  their
encouraging comments and suggestions. However, due to the increasing volume of correspondence, I am no longer able
to answer individual questions or to provide individual support. Unfortunately, I have still a few other things to do, e. g.,
working for a living. Nonetheless, I keep working on this publication at leisure, and I am still grateful for suggestions
and error reports.

This publication is released under the terms and conditions of the GNU Free Documentation License. A copy of the
latter is included.
                                                                                                                       
                                                                                                                            June 5th, 2015

                                                                                                                          Henning Umland

Web site:

http://www.celnav.de



Chapter 1

The Basics of Celestial Navigation

Celestial navigation, also called astronomical navigation, is the art and science of finding one's geographic position
through astronomical observations, in most cases by measuring altitudes of celestial bodies � sun, moon, planets, or
stars. 

An observer watching the night sky without knowing anything about geography and astronomy might spontaneously
get the impression of being on a horizontal plane located at the center of a huge hollow sphere with the celestial bodies
attached to its inner surface. This naive concept of a spherical universe has probably been in existence since the
beginning of mankind. Later, astronomers of the ancient world (Ptolemy et al.) developed it to a high degree of
perfection. Still today, spherical astronomy is fundamental to celestial navigation since the navigator, like the
astronomers of old, measures apparent positions of bodies in the sky without knowing their absolute positions in
space.

The apparent position of a body in the sky is best characterized by the horizon system of coordinates which is a
special case of a spherical coordinate system. In this system, an imaginary (!) observer is located at the center of the
celestial sphere, a hollow sphere of infinite diameter, which is divided into two hemispheres by the plane of the
celestial horizon (Fig. 1-1). The center of the celestial sphere coincides with the center of the earth which is also
assumed to be a sphere. The first coordinate of the observed body is its geocentric altitude, H. H is the vertical angle
between the celestial horizon and a straight line extending from the center of the celestial sphere to the body. H is
measured from 0° through +90° above the horizon and from 0° through -90° below the horizon. The geocentric zenith
distance, z, is the corresponding angular distance between the body and the zenith, an imaginary point vertically
overhead. The zenith distance is measured from 0° through 180°. H and z are complementary angles (H + z = 90°).
The point opposite to the zenith on the celestial sphere is called nadir (H = -90°, z = 180°). H and z are also arcs of
the vertical circle going through zenith, nadir, and the observed body. The second coordinate of the body, the
geocentric true azimuth, AzN, is the horizontal direction of the body with respect to the geographic north point on

the celestial horizon, measured clockwise from 0°(N) through 360°. The third coordinate, the distance of the body
from the center of the celestial sphere, is not measured.

In reality, the observer is not located on the plane of the celestial horizon but on or above the surface of the earth. The
horizontal plane passing through the observer's eye is called sensible horizon (Fig. 1-2).

The latter merges into the geoidal horizon, a plane tangent to the earth at the observer's position, when the observer's
eye is at sea level. The planes of celestial, geoidal, and sensible horizon are parallel to each other and perpendicular to
the direction of gravity at the observer's position.
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Since sensible and geoidal horizon are relatively close to each other (compared with the radius of the earth), they can
be considered as identical under most practical conditions. None of the above fictitious horizons coincides with the
visible horizon, the line where the earth's surface and the sky appear to meet.

Usually, the trigonometric calculations of celestial navigation are based on the geocentric altitudes (or geocentric
zenith distances) of bodies. Since it is not possible to measure the geocentric altitude of a body directly, it has to be
derived from its altitude with respect to the visible or sensible horizon (altitude corrections, chapter 2).

The altitude of a body with respect to the visible sea horizon is usually measured with a marine sextant. Measuring
altitudes with respect to the (invisible) sensible horizon requires an instrument with an artificial horizon, e. g., a
theodolite (chapter 2). An artificial horizon is a device that indicates a plane perpendicular to the local direction of
gravity, for example by means of a pendulum or a spirit level.

Geocentric altitude and zenith distance of a celestial body are determined by the distance between the terrestrial
observer and the geographic position of the body, GP. GP is the point where a straight line extending from the center
of the earth, C, to the celestial body intersects the earth's surface (Fig. 1-3).

A body appears in the zenith (H = 90°, z = 0°) when GP is identical with the observer's position. A terrestrial (earth-
bound) observer moving away from GP will experience that the geocentric zenith distanze of the body varies in direct
proportion with his growing distance from GP. The geocentric altitude of the body decreases accordingly. The body is
on the celestial horizon (H = 0°, z = 90°) when the observer is one quarter of the circumference of the earth away from
GP. If the observer moves farther away from GP, the body will become invisible. 

For any given altitude of a body, there is an infinite number of terrestrial positions having the same distance from GP
and thus forming a circle on the earth's surface (Fig 1-4). The center of this circle is on the line C�GP, below the
earth's surface. An observer traveling along the circle will measure a constant altitude (and zenith distance) of the
body, irrespective of his position on the circle. Therefore, such a circle is called a circle of equal altitude. 

The arc length r, the distance of the observer from GP measured along the surface of the earth, is obtained through the
following formula:

One nautical mile (1 nm = 1.852 km) is the great circle distance (chapter 3) of one minute of arc on the surface of
the earth. The mean perimeter of the earth is 40031.6 km.
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As shown in Fig. 1-4, light rays originating from a distant object (fixed star) are virtually parallel to each other when
they arrive at the earth. Therefore, the altitude of such an object with respect to the geoidal (or sensible) horizon,
called topocentric altitude, equals its geocentric altitude. In contrast, light rays coming from a relatively close body
(moon, sun, planets) diverge significantly. This results in a measurable difference between topocentric and geocentric
altitude, called parallax in altitude. The effect is greatest when observing the moon, the body closest to the earth
(chapter 2). 

The true azimuth of a body depends on the observer's position on the circle of equal altitude and can assume any value
between 0° and 360°. Usually, the navigator is not equipped to measure the azimuth of a body with the same precision
as its altitude. However, there are methods to calculate the azimuth from other quantities. 

Whenever we measure the altitude or zenith distance of a celestial body, we have already gained some information
about our own geographic position because we know we are somewhere on a circle of equal altitude defined by the
center, GP (the geographic position of the body), and the radius, r. Of course, the information available so far is still
incomplete because we could be anywhere on the circle of equal altitude which comprises an infinite number of
possible positions and is therefore also referred to as a circle of position (chapter 4). 

We extend our thought experiment and observe a second body in addition to the first one. Logically, we are on two
circles of equal altitude now. Both circles overlap, intersecting each other at two points on the earth's surface. One of
these two points of intersection is our own position (Fig. 1-5a). Theoretically, both circles could be tangent to each
other. This case, however, is unlikely. Moreover, it is undesirable and has to be avoided (chapter 16).

In principle, it is not possible for the observer to know which point of intersection � Pos. 1 or Pos. 2 � is identical with
his actual position unless he has additional information, e. g., a fair estimate of his position, or the compass bearing
(approximate azimuth) of at least one of the bodies. The problem of ambiguity does not occur when three bodies are
observed because there is only one point where all three circles of equal altitude intersect (Fig. 1-5b). 

Theoretically, the observer could find his position by plotting the circles of equal altitude on a globe. Indeed, this
method has been used in the past but turned out to be impractical because precise measurements require a very big
globe. Plotting circles of equal altitude on a map is possible if their radii are small enough. This usually requires
observed altitudes of almost 90°. The method is rarely used since such altitudes are not easy to measure. Usually,
circles of equal altitude have diameters of several thousand nautical miles and do not fit on nautical charts. Further,
plotting circles of such dimensions is very difficult due to geometric distortions caused by the respective map
projection (chapter 13).

Usually, the navigator has at least a rough idea of his position. It is therefore not required to plot a complete circle of
equal altitude. In most cases only a short arc of the circle in the vicinity of the observer's estimated position is of
interest. If the curvature of the arc is negligible, depending on the radius of the circle and the map scale, it is possible
to plot a straight line (a secant or a tangent of the circle of equal altitude) instead of the arc. Such a line is called a line
of position or position line.

In the 19th century, navigators developed very convenient mathematical and graphic methods for the construction of
position lines on nautical charts. The point of intersection of at least two suitable position lines marks the observer's
position. These methods, which are considered as the beginning of modern celestial navigation, will be explained in
detail later.

In summary, finding one's geographic position by astronomical observations includes three basic steps:

1. Measuring the altitudes or zenith distances of two or more celestial bodies (chapter 2).

2. Finding the geographic position of each body at the instant of its observation (chapter 3).

3. Deriving one's own position from the above data (chapter 4&5).
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Chapter 2

Altitude Measurement

In principle, altitudes and zenith distances are equally suitable for navigational calculations. Traditionally, most
formulas are based upon altitudes since these are easily measured using the visible sea horizon as a natural reference
line. Direct measurement of the zenith distance requires an instrument with an artificial horizon, e. g., a pendulum or
spirit level indicating the local direction of gravity (perpendicular to the plane of the sensible horizon) since a
reference point in the sky does not exist.

Instruments

A marine sextant consists of a system of two mirrors and a telescope mounted on a sector-shaped metal frame (usually
brass or aluminium alloy). A schematic illustration of the optical components is given in Fig. 2-1. The horizon glass is
a half-silvered mirror whose plane is perpendicular to the plane of the frame. The index mirror, the plane of which is
also perpendicular to the frame, is mounted on the so-called index arm rotatable on a pivot perpendicular to the frame.
The optical axis of the telescope is parallel to the frame and passes obliquely through the horizon glass. During an
observation, the instrument frame is held in an upright position, and the visible sea horizon is sighted through the
telescope and horizon glass. A light ray originating from the observed body is first reflected by the index mirror and
then by the back surface of the horizon glass before entering the telescope. By slowly rotating the index mirror on the
pivot the superimposed image of the body is aligned with the image of the horizon line. The corresponding altitude,
which is twice the angle formed by the planes of horizon glass and index mirror, can be read from the graduated limb,
the lower, arc-shaped part of the sextant frame (Fig. 2-2). Detailed information on design, usage, and maintenance of
sextants is given in [3] (see appendix). 

                       Fig. 2-2             

On land, where the horizon is too irregular to be used as a reference line, altitudes have to be measured by means of
instruments with an artificial horizon. 
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A bubble attachment is a special sextant telescope containing an internal artificial horizon in the form of a small
spirit level the bubble of which (replacing the visible horizon) is superimposed on the image of the celestial body.
Bubble attachments are expensive (almost the price of a sextant) and not very accurate because they require the sextant
to be held absolutely still during an observation, which is rather difficult to manage. A sextant equipped with a bubble
attachment is referred to as a bubble sextant. Special bubble sextants were used for air navigation before electronic
navigation systems became standard equipment. 

On land, a pan filled with water or, preferably, a more viscous liquid, e. g., glycerol, can be utilized as an external
artificial horizon. As a result of gravity, the surface of the liquid forms a perfectly horizontal mirror unless distorted
by movements or wind. The vertical angular distance between a body and its mirror image, measured with a marine
sextant, is twice the altitude of the body. This very accurate method is the perfect choice for exercising celestial
navigation in a backyard. Fig. 2-3 shows a professional form of an external artificial horizon. It consists of a
horizontal mirror (polished black glass) attached to a metal frame which is supported by three leg screws. Prior to an
observation, the screws have to be adjusted with the aid of one or two detachable high-precision spirit levels until the
mirror is exactly horizontal in every direction.

              Fig. 2-3         

                           

             Fig. 2-4      

A theodolite (Fig. 2-4) is basically a telescopic sight which can be rotated about a vertical and a horizontal axis. The
angle of elevation (altitude) is read from the graduated vertical circle, the horizontal direction is read from the
horizontal circle. The specimen shown above has vernier scales and is accurate to approx. 1'.
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The vertical axis of the instrument is aligned with the direction of gravity by means of a spirit level (artificial horizon)
before starting the observations. Theodolites are primarily used for surveying, but they are excellent navigation
instruments as well. Some models can resolve angles smaller than 0.1' which is not achieved even with the best
sextants. A theodolite is mounted on a tripod which has to rest on solid ground. Therefore, it is restricted to land
navigation. Mechanical theodolites traditionally measure zenith distances. Electronic models can optionally measure
altitudes. Some theodolites measure angles in the unit gon instead of degree (400 gon = 360°).

Before viewing the sun through an optical instrument, a proper shade glass must be inserted, otherwise the retina
might suffer permanent damage! The sextant shown in Fig. 2-2 has two sets of shade glasses attached to the frame
(one for each optical path).

Altitude corrections

Any altitude measured with a sextant or theodolite contains errors. Altitude corrections are necessary to
eliminate systematic altitude errors AND to reduce the topocentric altitude of a body to the geocentric altitude
(chapter 1). Altitude corrections do NOT remove random observation errors. 

Index error (IE)

A sextant or theodolite may display a constant error (index error, IE) which has to be subtracted from every reading
before the latter can be used for further calculations. The error is positive if the angle displayed by the instrument is
greater than the actual angle and negative if the displayed angle is smaller. Errors which vary with the displayed angle
require the use of an individual correction table if the error can not be eliminted by overhauling the instrument.

The sextant altitude, Hs, is the altitude as indicated by the sextant before any corrections have been applied. 

When using an external artificial horizon, H1 (not Hs!) has to be divided by two. 

A theodolite measuring the zenith distance, z,  requires the following formula to obtain H1:

Dip of horizon

If the earth's surface were an infinite plane, visible and sensible horizon would be identical. In reality, the visible sea
horizon appears several arcminutes below the sensible horizon which is the result of two contrary effects, the curvature
of the earth's surface and atmospheric refraction. The geometrical horizon is a flat cone formed by an infinite number
of straight lines tangent to the earth and converging at the observer's eye. Since atmospheric refraction bends light
rays passing along the earth's surface toward the earth, all points on the geometric horizon appear to be elevated, and
thus form the visible horizon. Visible and geometrical horizon would be the same if the earth had no atmosphere (Fig.
2-5).

The vertical angular distance of the sensible horizon from the visible horizon is called dip (of horizon) and is a
function of the height of eye, HE, the vertical distance of the observer's eye from the sea surface (the distance between
sensible and geoidal horizon):
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1st correction: H 1 = Hs− IE

H 1 = 90 ° −  z− IE 

Dip [' ] ≈ 1.76⋅HE [m ] ≈ 0.97⋅HE [ ft ]



The above formula is empirical and includes the effects of the curvature of the earth's surface and of atmospheric
refraction*.

*At sea, the dip of horizon can be obtained directly by measuring the angular distance between the visible horizon in front of the observer and the visible
horizon behind the observer through the zenith. Subtracting 180° from the angle thus measured and dividing the resulting angle by two yields the dip of
horizon. This very accurate method can not be accomplished with a sextant but requires a special instrument (prismatic reflecting circle) which is able to
measure angles greater than 180°.

The correction for the dip of horizon has to be omitted (Dip = 0) if any kind of an artificial horizon is used since
the latter is solely controlled by gravity and thus indicates the plane of the sensible horizon (perpendicular to
the vector of gravity).

The altitude obtained after applying corrections for index error and dip is also referred to as apparent altitude, Ha.

Atmospheric refraction

A light ray coming from a celestial body is slightly deflected toward the earth when passing obliquely through the
atmosphere. This phenomenon is called refraction, and occurs always when light enters matter of different density at
an angle smaller than 90°. Since the eye is not able to detect the curvature of the light ray, the body appears to be on a
straight line tangent to the light ray at the observer's eye, and thus appears to be higher in the sky. R is the vertical
angular distance between apparent and true position of the body measured at the observer's eye (Fig. 2-6).

Atmospheric refraction is a function of Ha (= H2). Atmospheric standard refraction, R0, is 0' at 90° altitude and

increases progressively to approx. 34' as the apparent altitude approaches 0°:

Ha [°] 0 1 2 5 10 20 30 40 50 60 70 80 90

R0 ['] ~34 ~24 ~18 9.9 5.3 2.6 1.7 1.2 0.8 0.6 0.4 0.2 0.0 

There are several formulas to calculate R0. Smart's formula yields accurate results from 15° through 90° apparent

altitude [2,9]:

The coefficients shown here are not exactly those given by Smart but have been modified to match the results (within
±0.0003') obtained with Saastamoinen's highly accurate formula (conditions: 10°C, 1010 hPa, 75% relative air
humidity) [10]. For the purpose of celestial navigation, Smart's formula is still accurate enough at 10° apparent
altitude.

For altitudes between 0° and 15°, the following formula is recommended [10]. H2 is measured in degrees:
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R0 [' ] =
34.1334.197⋅H 20.00428⋅H 2

2

10.505⋅H 20.0845⋅H 2
2

2nd correction: H 2 = H 1−Dip

Ha = H 2

R0[ ' ] =
0.96469

tan H2[°]
−

0.00113

tan3 H2[° ]



A rather simple refraction formula including the whole range of altitudes from 0° through 90° was found by Bennett:

Bennett's formula is sufficiently accurate for marine navigation. The maximum systematic error is smaller than 0.1'
[2].

Atmospheric refraction is influenced by atmospheric pressure, air temperature, and, to a lesser degree, by relative air
humidity. Therefore the standard refraction, R0, has to be multiplied with a correction factor, f, to obtain the actual
refraction for a given combination of pressure and temperature (the influence of air humidity is usually ignored).

P is the atmospheric pressure and T the air temperature at the observer's position. Standard conditions (f = 1) are
1010 hPa (29.83 in Hg) and 10°C (50°F, 283.15 K). The correction for pressure and temperature is sometimes omitted
(f = 1) since the resulting error is often tolerable.

The common refraction formulas refer to a fictitious standard atmosphere with an average density gradient. The actual
refraction may differ significantly from the calculated one if anomalous atmospheric conditions are present
(temperature inversion, mirage effects, etc.). The influence of atmospheric anomalies increases strongly with
decreasing altitude. Particularly refraction below ca. 5° apparent altitude may become erratic, and calculated or
tabulated values in this range should not be blindly relied on. It should be mentioned that the dip of horizon, too, is
influenced by atmospheric refraction and may become unpredictable under certain meteorological conditions.

H3 represents the topocentric altitude of the body, the altitude with respect to the sensible horizon.

Parallax

The trigonometric calculations of celestial navigation are based upon geocentric altitudes. Fig. 2-7 illustrates that the
geocentric altitude of an object, H4, is always greater than the topocentric altitude, H3. The difference H4-H3 is called

parallax in altitude, P. P decreases as the distance between object and earth increases. Accordingly, the effect is
greatest when observing the moon since the latter is the object nearest to the earth. On the other hand, P is too small to
be measured when observing fixed stars (see chapter 1, Fig. 1-4). Theoretically, the observed parallax refers to the
sensible, not to the geoidal horizon. However, since the height of eye is by several magnitudes smaller than the radius
of the earth, the resulting error is usually not significant.

The parallax (in altitude) of a body being on the geoidal horizon is called horizontal parallax, HP (Fig. 2-7). The
horizontal parallax of the sun is approx. 0.15'. Current values for the HP of the moon (approx. 1°) and the
navigational planets are given in the Nautical Almanac [12] and similar publications, e.g., [13]*.

*Tabulated values for HP refer to the equatorial radius of the earth (equatorial horizontal parallax, see chapter 9).
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R0[ ' ] =
1

tan (H2 [° ] +
7.31

H2 [° ] + 4.4 )

3rd correction: H 3 = H 2 − f ⋅R0 ≈ H 2−R0

f =
p[hPa]

1010
⋅

283.15
273.15+T [° C ]

=
p[ in . Hg ]

29.83
⋅

510
460+T [° F ]



P is a function of topocentric altitude and horizontal parallax of a body.*  It has to be added to H3.

An additional correction for the oblateness of the earth is recommended (P, see p. 2-8).

H4 represents the geocentric altitude of the body,  the altitude with respect to the celestial horizon.

Semidiameter

When observing sun or moon with a marine sextant or theodolite, it is not possible to locate the center of the body
precisely. It is therefore common practice to measure the altitude of the upper or lower limb of the body and add or
subtract the apparent semidiameter, SD. The latter is the angular distance of the respective limb from the center of
the body (Fig. 2-8).

We have to correct for the geocentric SD, the SD measured by a fictitious observer at the center the earth, because H4
is measured at the center the earth (see Fig. 2-4)**. The geocentric semidiameters of sun and moon are given on the
daily pages of the Nautical Almanac [12]. The geocentric SD of a body can be calculated from its tabulated horizontal
parallax. This is of particular interest when observing the moon.

The factor k is the ratio of the radius of the respective body to the equatorial radius of the earth (rEarth = 6378 km). 

**Note that Fig. 2-8 shows the topocentric semidiameter.

Although the semidiameters of the navigational planets are not quite negligible (the SD of Venus can increase to 0.5'),
the apparent centers of these bodies are usually observed, and no correction for SD is applied. With a strong telescope,
however, the limbs of the brightest planets can be observed. In this case the correction for semidiameter should be
applied. Semidiameters of stars are much too small to be measured (SD = 0).

(lower limb: add SD, upper limb: subtract SD)

When using a bubble sextant, we observe the center of the body and skip the correction for semidiameter.

The altitude obtained after applying the above corrections is called observed altitude, Ho: Ho = H 5

Ho represents the geocentric altitude of the center of the body.

*To be exact, the parallax formula shown above is rigorous for the observation of the center of a body only. When observing the lower or upper limb, there
is a small error caused by the curvature of the body's surface which is usually negligible. The rigorous formula for the observation of either of the limbs is:
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4th correction: H 4 = H 3  P

5th correction: H 5 = H 4 ± SD geocentric

SDgeocentric = arcsin k ⋅sin HP  ≈ k ⋅ HP k Moon =
r Moon

r Earth

= 0.2725

P = arcsin sin HP⋅cos H 3 ≈ HP ⋅cos H 3

Lower limb: P = arcsin [sin HP ⋅cos H 3  k  ] − arcsin k ⋅sin HP  ≈ HP ⋅cos H 3

Upper limb: P = arcsin [sin HP⋅cos H 3 − k  ]  arcsin k ⋅sin HP  ≈ HP⋅cos H 3



Combined corrections for semidiameter and parallax

H3 can be reduced to the observed altitude in one step. The following formula includes the corrections for

semidiameter and parallax in altitude:

(lower limb: add k, upper limb: subtract k)

Alternative procedure for semidiameter and parallax

Correcting for semidiameter before correcting for parallax is also possible. In this case, however, we have to calculate
with the topocentric semidiameter, the semidiameter of the respective body as seen from the observer's position on the
surface of the earth (see Fig. 2-8).

With the exception of the moon, the body nearest to the earth, there is no significant difference between topocentric
and geocentric semidiameter. The topocentric SD of the moon is only marginally greater than the geocentric SD when
the moon is on the sensible (geoidal) horizon but increases measurably as the altitude increases because of the
decreasing distance between observer and moon. The distance is smallest (decreased by about the radius of the earth)
when the moon is in the zenith. As a result, the topocentric SD of the moon being in the zenith is approximately 0.3'
greater than the geocentric SD. This phenomenon is called augmentation (Fig. 2-9).

The rigorous formula for the topocentric (augmented) semidiameter of the moon is:

(observation of lower limb: add k, observation of upper limb: subtract k)

 
The approximate topocentric semidiameter of the moon can be calculated with a simpler formula given by Meeus [2].
It refers to the center of the moon but is still accurate enough for the purpose of navigation (error < 1'') when applied
to the altitude of the upper or lower limb, respectively:

A similar formula was proposed by Stark [14]:
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SDtopocentric = arctan
k

[  1
sin2 HP

− cos H 3 ± k 
2 ] − sin H 3

SDtopocentric ≈ k ⋅ HP⋅1  sin HP ⋅sin H 3

SDtopocentric ≈
k ⋅ HP

1 − sin HP ⋅sin H 3

Ho = H 3  arcsin [sin HP ⋅cos H 3 ± k  ] ≈ H 3  HP ⋅cos H 3 ± k 



Thus, the alternative fourth correction is:

(lower limb: add SD, upper limb: subtract SD)

H4,alt represents the topocentric altitude of the center of the moon.

Using the parallax formula explained above, we calculate Palt from H4,alt:

Thus, the alternative fifth correction is:

Since the geocentric SD is easier to calculate than the topocentric SD, it is usually more convenient to correct for the
semidiameter in the last place or, better, to use the combined correction for parallax and semidiameter unless one has
to know the augmented SD of the moon for special reasons.

The topocentric semidiameter of the moon can also be calculated from the observed altitude (the geocentric altitude of
the center of the moon), Ho:

Instead of Ho, the computed altitude, Hc, can be used (see chapter 4).

Correction for the oblateness of the earth

The above formulas for parallax and semidiameter are rigorous for spherical bodies. In fact, the earth is not a sphere
but rather resembles an oblate spheroid, a sphere flattened at the poles (chapter 9). In most cases, the navigator will
not notice the difference. However, when observing the moon, the flattening of the earth may cause a small but
measurable error (up to ±0.2') in the parallax, depending on the observer's position. Therefore, a small correction, ΔP,
should be added to P if higher precision is required [12]. When using the combined formula for semidiameter and
parallax, ΔP is added to Ho.

* Replace H with H3 or H4,alt, respectively.

Lat is the observer's estimated latitude (chapter 4). AzN, the true azimuth of the moon, is either measured with a

compass (compass bearing) or calculated using the azimuth formulas given in chapter 4.

Phase correction (Venus and Mars)

Since Venus and Mars show phases similar to the moon, their apparent center may differ somewhat from the actual
center. The coordinates of both planets tabulated in the Nautical Almanac [12] include the phase correction, i. e., they
refer to the apparent center. The phase correction for Jupiter and Saturn is too small to be significant.

In contrast, coordinates calculated with Interactive Computer Ephemeris refer to the actual center. In this case, the
upper or lower limb of the respective planet should be observed if the magnification of the telescope is sufficient, and
the correction for semidiameter should be applied.
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5th correction (alternative): H 5, alt = H 4,alt  Palt

Ho = H 5, alt

SDtopocentric = arcsin
k

1 
1

sin2 HP
− 2⋅

sin Ho
sin HP

P improved = P   P

 P ≈ f ⋅HP ⋅ [sin 2⋅Lat ⋅cos Az N ⋅sin H − sin
2

Lat ⋅cos H ]* f =
1

298.257

Palt = arcsin sin HP ⋅cos H 4,alt  ≈ HP ⋅cos H 4, alt

4th correction (alt.): H 4,alt. = H 3 ± SD topocentric



Altitude correction tables

The Nautical Almanac provides sextant altitude correction tables for sun, planets, stars (pages A2 – A4), and the
moon (pages xxxiv – xxxv), which can be used instead of the above formulas if small errors (< 1') are tolerable
(among other things, the tables cause additional rounding errors). 

Other corrections

Sextants with an artificial horizon can exhibit additional errors caused by acceleration forces acting on the bubble or
pendulum and preventing it from aligning itself with the direction of gravity.
Such acceleration forces can be accidental (vessel movements) or systematic (coriolis force). The coriolis force is
important to air navigation (high speed!) and requires a special correction formula.

In the vicinity of mountains, ore deposits, and other local irregularities of the earth's crust, the vector of gravity may
slightly differ from the normal to the reference ellipsoid, resulting in altitude errors that are difficult to predict (local
deflection of the vertical, chapter 9). Thus, the astronomical position of an observer (resulting from astronomical
observations) may be slightly different from his geographic (geodetic) position with respect to a reference ellipsoid
(GPS position). The difference is usually small at sea and may be ignored there. On land, particularly in the vicinity of
mountain ranges, position errors of up to 50 arcseconds (Alps) or even 100 arcseconds (Himalaya) have been found.
For the purpose of surveying there are maps containing local corrections for latitude and longitude, depending on the
respective reference ellipsoid.
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Chapter 3
Geographic Position and Time

Geographic and Astronomical Terms

In celestial navigation, the earth is regarded as a sphere. This is an approximation only, but the errors caused by the
flattening of the earth are usually negligible (chapter 9). A circle on the surface of the earth whose plane passes
through the earth's center is called a great circle. A great circle has the greatest possible diameter of all circles on the
surface of the earth. Any circle on the surface of the earth whose plane does not pass through the earth's center is a
small circle. The equator is the only great circle whose plane is perpendicular to the polar axis, the axis of rotation.
Further, the equator is the only parallel of latitude being a great circle. Any other parallel of latitude is a small circle
whose plane is parallel to the plane of the equator. A meridian is a great circle going through the geographic poles,
the points where the polar axis intersects the earth's surface. The upper branch of a meridian is the half from pole to
pole passing through a given point, for example the observer's position. The lower branch is the opposite half. The
meridian passing through the observer's position is called local meridian. The Greenwich meridian, the meridian
passing through the center of the transit instrument at the Royal Greenwich Observatory, was adopted as the prime
meridian at the International Meridian Conference in 1884. Its upper branch (0°) is the reference for measuring
longitudes (0°...+180° to the east and 0°...–180° to the west), its lower branch (±180°) is the basis for the
International Dateline (Fig. 3-1). 

Each point of the earth's surface has an imaginary counterpart on the surface of the celestial sphere obtained by central
projection. The projected image of the observer's position, for example, is the zenith. Accordingly, there are two
celestial poles, the celestial equator, celestial meridians, etc. The local celestial meridian is also a vertical circle, a
great circle on the celestial sphere passing through the observer's zenith and nadir. Further, the local celestial
meridian, passing throught the celestial poles, marks the north point and the south point on the horizon. The vertical
circle perpendicular to the local meridian, called prime vertical, marks the west point and east point on the horizon.

The Equatorial System of Coordinates

The geographic position of a celestial body, GP, is defined by the equatorial system of coordinates, a spherical
coordinate system the origin of which is at the center of the earth (Fig. 3-2). The Greenwich hour angle of a body,
GHA, is the angular distance of the upper branch of the meridian passing through GP from the upper branch of the
Greenwich meridian (Lon = 0°), measured westward from 0° through 360°. The meridian going through GP (as well
as its projection on the celestial sphere) is called hour circle. The Declination, Dec, is the angular distance of GP
from the plane of the equator, measured northward through +90° or southward through –90°. GHA and Dec are
geocentric coordinates (measured at the center of the earth).
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Although widely used, the term „geographic position“ is misleading when applied to a celestial body since it actually
describes a geocentric position in this case (see chapter 9). GHA and Dec are equivalent to geocentric longitude and
latitude of a position with the exception that longitudes are measured westward from the Greenwich meridian
through −180° and eastward through +180°.

Since the Greenwich meridian rotates with the earth from west to east, whereas each hour circle remains linked
with the almost stationary position of the respective body in the sky, the Greenwich hour angles of all celestial
bodies increase by approx. 15° per hour (360° in 24 hours). In contrast to stars (15° 2.46' /h), the GHA's of sun,
moon, and planets increase at slightly different (and variable) rates. This is caused by the revolution of the planets
(including the earth) around the sun and by the revolution of the moon around the earth, resulting in additional
apparent motions of these bodies in the sky. For several applications it is useful to measure the angular distance
between the hour circle of a celestial body and the hour circle of a reference point in the sky instead of the Greenwich
meridian because the angle thus obtained is independent of the earth's rotation. The sidereal hour angle, SHA, of a
given body is the angular distance of its hour circle (upper branch) from the hour circle (upper branch) of the first
point of Aries (also called vernal equinox, see below), measured westward from 0° through 360°. Thus, the GHA of
a body is the sum of its sidereal hour angle and the GHA of the first point of Aries, GHAAries:

(If the resulting GHA is greater than 360°, subtract 360°.)

The angular distance of a celestial body eastward from the hour circle of the vernal equinox, measured in time units
(24h = 360°), is called right ascension, RA. The latter is mostly used by astronomers whereas navigators prefer
sidereal hour angles.

Fig. 3-3 illustrates the various hour angles on the plane of the equator as seen from the celestial north pole (time
diagram).

Declinations are not affected by the rotation of the earth. The declinations of sun and planets change primarily due to
the obliquity of the ecliptic, the inclination of the earth's equator to the ecliptic. The latter is the mean orbital plane
of the earth and forms a great circle on the celestial sphere. The declination of the sun, for example, varies
periodically between ca. +23.5° (summer solstice) and ca. -23.5° (winter solstice) as shown in Fig.3-4. 

The two points on the celestial sphere where the great circles of ecliptic and celestial equator intersect are called
equinoxes. The term equinox is also used for the times at which the apparent sun, moving westward along the ecliptic
during the course of a year, crosses the celestial equator, approximately on March 21 and on September 23*. There is a
vernal equinox (first point of Aries, vernal point) and an autumnal equinox. The former is the reference point for
measuring sidereal hour angles (Fig. 3-5). At the instant of an equinox (Dec ≈ 0°), day and night have roughly (!) the
same length (12 h), regardless of the observer's position (Lat. aequae noctes = equal nights).

*To be more precise, the equinoxes are defined as the instants at which the ecliptic longitude (λ) of the apparent sun is either 0° (vernal equinox) or 180° (autumnal equinox)
[10]. The actual declination of the sun at such an instant may slightly differ from 0° since the earth is not always exactly on the mean orbital plane (perturbations).
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GHA = SHA + GHAAries

RA [h] = 24 h −
SHA [° ]

15
⇔ SHA [° ] = 360 ° − 15⋅ RA [h]



The declinations of the planets and the moon are also influenced by the inclinations of their own orbits to the ecliptic.
The plane of the moon's orbit, for example, is inclined to the ecliptic by approx. 5° and makes a tumbling movement
with a period of 18.6 years (Saros cycle). As a result, the declination of the moon varies between approx. -28.5° and
+28.5° at the beginning and at the end of the Saros cycle, and between approx. -18.5° and +18.5° in the middle of the
Saros cycle.

Further, sidereal hour angles and declinations of all bodies change slowly due to the influence of the precession of the
earth's polar axis. Precession is a slow, tumbling movement of the polar axis along the surface of an imaginary double
cone. One revolution lasts about 26000 years (Platonic year). As a result, the equinoxes move westward along the
celestial equator at a rate of approx. 50'' per year. Thus, the sidereal hour angle of each star decreases at about the
same rate. In addition, there is a small elliptical oscillation of the polar axis with a period of 18.6 years (compare with
the Saros cycle), called nutation, which causes the equinoxes to travel along the celestial equator at a periodically
changing rate. Thus we have to distinguish between the ficticious mean equinox of date and the true equinox of date
(see time measurement). Accordingly, the declination of each body oscillates. The same applies to the rate of change of
the sidereal hour angle and right ascension of each body.

Even stars are not fixed in space but move individually, resulting in a slow drift of their equatorial coordinates (proper
motion). Finally, the apparent positions of bodies are influenced by other factors, e. g., the finite speed of light (light
time, aberration), and annual parallax, the latter being caused by the earth orbiting around the sun [16]. The
accurate prediction of geographic positions of celestial bodies requires complicated algorithms. Formulas for the
calculation of low-precision ephemerides of the sun (accurate enough for celestial navigation) are given in chapter
15.

Time Measurement in Navigation and Astronomy

Since the Greenwich hour angle of any celestial body changes rapidly, celestial navigation requires accurate
time measurement, and the instant of each observation should be measured to the second if possible. This is
usually done by means of a chronometer and a stopwatch (chapter 17). The effects of time errors are dicussed in
chapter 16. On the other hand, the earth's rotation with respect to celestial bodies provides an important basis for
astronomical time measurement.

Coordinates tabulated in the Nautical Almanac refer to Universal Time, UT. UT has replaced Greenwich Mean
Time, GMT, the traditional basis for civil time keeping. Conceptually, UT (like GMT) is the hour angle of the
fictitious mean sun, expressed in hours, with respect to the lower branch of the Greenwich meridian (mean solar
time, Fig. 3-6).
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UT is calculated using the following formula:

UT [h] =
GHAMeanSun [° ]

15
 12

(If UT is greater than 24 h, subtract 24 hours.)

By definition, the GHA of the mean sun increases by exactly 15° per hour, completing a 360° cycle in 24 hours.
The unit for UT is 1 solar day, the time interval between two consecutive meridian transits of the mean sun.

The rate of change of the GHA of the apparent (observable) sun varies periodically and is sometimes slightly greater,
sometimes slightly smaller than 15°/h during the course of a year. This behavior is caused by the eccentricity of the
earth's orbit and by the obliquity of the ecliptic. The time measured by the hour angle of the apparent sun with respect
to the lower branch of the Greenwich meridian is called Greenwich Apparent Time, GAT. A sundial located on the
Greenwich meridian would indicate GAT. The difference between GAT and UT at a given instant is called equation of
time, EoT:

EoT varies periodically between approx. −14 and +17 minutes (Fig. 3-7). Predicted values for EoT for each day of the
year (at 0:00 and 12:00 UT) are given in the Nautical Almanac (grey background indicates negative EoT). EoT is
needed when calculating times of sunrise and sunset, or determining a noon longitude (chapter 6). Formulas for the
calculation of EoT are given in chapter 15.

The hour angle of the mean sun with respect to the lower branch of the local meridian (the upper branch going
through the observer's position) is called Local Mean Time, LMT. LMT and UT are linked through the following
formula:

The instant of the mean sun passing through the upper branch of the local meridian is called Local Mean Noon,
LMN.

A zone time is the local mean time with respect to a longitude being a multiple of ±15°. Thus, zone times differ by an
integer number of hours. In the US, for example, Eastern Standard Time (UT−5h) is LMT at −75° longitude, Pacific
Standard Time (UT−8h) is LMT at −120° longitude. Central European Time (UT+1h) is LMT at +15° longitude.

The hour angle of the apparent sun with respect to the lower branch of the local meridian is called Local Apparent
Time, LAT:

The instant of the apparent sun crossing the upper branch of the local meridian is called Local Apparent Noon, LAN.

Time measurement by the earth's rotation does not necessarily require the sun as the reference point in the sky. 
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EoT = GAT − UT

LMT [h] = UT [h] 
Lon [° ]

15

LAT [h] = GAT [h ]
Lon[° ]

15



Greenwich Apparent Sidereal Time, GAST, is a time scale based upon the Greenwich hour angle (upper branch) of
the true vernal equinox of date, GHAAries (see Fig. 3-3).

The values for GHAAries tabulated in the Nautical Almanac refer to the true equinox of date.

GAST can be measured by the Greenwich meridian transit of a chosen star since GAST and the right ascension of the
observed star are numerically equal at the moment of meridian transit.

The Greenwich hour angle (measured in hours) of the imaginary mean vernal equinox of date (travelling along the
celestial equator at a constant rate) is called Greenwich Mean Sidereal Time, GMST. The difference between GAST
and GMST at a given instant is called equation of the equinoxes, EQ, or nutation in right ascension. EQ can be
predicted precisely. It varies within approx. ±1s.

Due to the earth's revolution around the sun, a mean sidereal day (the time interval between two consecutive meridian
transits of the mean equinox) is slightly shorter than a mean solar day:

Since the exact instant of the sun's meridian transit is difficult to find, UT is calculated from GMST, to which it is
linked through a formula [10]. Today, sidereal time (and thus, UT) is obtained by observation of extragalactical radio
sources (quasars). Quasars can be regarded as fixed to the imaginary celestial sphere since they do not exhibit any
measurable proper motion. Their apparent motions are measured through Very Long Baseline Interferometry
(VLBI). This technology, which involves a global network of observation stations, produces much more accurate
results than the observation of meridian transits.

By analogy with LMT and LAT, there is a Local Mean Sidereal Time, LMST, and a Local Apparent Sidereal Time,
LAST:

Solar time and sidereal time are both linked to the earth's rotation. The earth's rotating speed, however, decreases
slowly (tidal friction) and, moreover, fluctuates in an unpredictable manner due to random movements of matter
within the earth's body (magma) and on the surface (water, air). Therefore, neither of the two time scales is strictly
linear. Many astronomical applications, however, require a linear time scale. One example is the calculation of
ephemerides since the motions of celestial bodies in space are independent of the earth's rotation.

International Atomic Time, TAI, is the most accurate time standard presently available. It is obtained by statistical
analysis of data supplied by a world-wide network of atomic clocks. Among others, two important time scales are
derived from TAI: 

Civil life is mostly determined by Coordinated Universal Time, UTC, which is the basis for time signals broadcast by
radio stations, e. g., WWV or WWVH. UTC is controlled by TAI. Due to the variable rotating speed of the earth, UT
tends to drift away from UTC. This is undesirable since the cycle of day and night is linked to UT. Therefore, UTC is
synchronized to UT, if necessary, by inserting (or omitting) leap seconds at certain times (June 30 and December 31)
in order to avoid that the difference, ΔUT, exceeds the specified maximum value of  ±0.9 s.

N is the cumulative number of leap seconds inserted since 1972 (N = 34 in 2011.0). Due to the occasional leap
seconds, UTC is not a continuous time scale. Predicted values for ΔUT are published by the IERS Rapid Service [15]
on a weekly basis (IERS Bulletin A). Note that UT is a synonym for UT1 (UT1-UTC = DUT1 = ΔUT). The IERS also
announces the insertion (or omission) of leap seconds in advance (IERS Bulletins A + C).

Terrestrial Time, TT (formerly called Terrestrial Dynamical Time, TDT), is another time scale derived from TAI:

TT has replaced Ephemeris Time, ET. The offset of 32.184 s with respect to TAI is necessary to ensure a seamless
continuation of ET. TT is used in astronomy (calculation of ephemerides) and space flight. The difference between TT
and UT is called ΔT:
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GAST [h] =
GHAAries [° ]

15

EQ = GAST − GMST

24 h Mean Sidereal Time = 23h56m 4.090524s Mean Solar Time

LMST [h] = GMST [h ]
Lon[° ]

15
LAST [h] = GAST [h] 

Lon [° ]

15

UT = UTC   UT UTC = TAI − N

TT = TAI  32.184s

 T = TT − UT



At the beginning of the year 2015, ΔT was +67.6s.

ΔT is of some interest to the navigator since computer almanacs require TT (TDT) as time argument (programs using
UT calculate on the basis of interpolated or extrapolated ΔT values). A precise long-term prediction of ΔT is not
possible. Therefore, computer almanacs using only UT as time argument may become less accurate in the long term.
ΔT values for the presence and near future can be calculated with the following formula:

Current values and short-term predictions for UT1-UTC and for TAI-UTC (cumulative number of leap seconds) are
published in the IERS Bulletin A.

At present (2011) there is an ongoing discussion among scientists about the usefulness of leap seconds. Computer
operating systems (mostly running on UTC), for example, would require a continuous time scale to create error-free
time stamps for files at any instant. Another argument often heard is that the drift of UT with respect to atomic time is
so slow that its effect on civil life will not become obvious in the foreseeable future. This argument cannot be denied
since no one can tell if civilization as we know it today will still exist in, say, 3000 years. Up to now, no decision has
been made. The practice of celestial navigation would not be affected by a possible abolishment of leap seconds since
the calculation of ephemerides (RA, Dec) is based upon TT whereas the Greenwich hour angle of a celestial body is a
function of its right ascension and sidereal time (the latter being determined by the earth's rotation).

The GMT Problem

The term GMT has become ambigous since it is often used as a synonym for UTC now. Moreover, astronomers used to
reckon GMT from the upper branch of the Greenwich meridian until 1925 (the time thus obtained is sometimes called
Greenwich Mean Astronomical Time, GMAT). Therefore, the term GMT should be avoided in scientific publications,
except when used in a historical context.

The Nautical Almanac

Predicted values for GHA and Dec of sun, moon and the navigational planets are tabulated for each integer hour (UT)
of a calendar year on the daily pages of the Nautical Almanac, N.A., and similar publications [12, 13]. GHAAries is

tabulated in the same manner. 

Listing GHA and Dec of all 57 fixed stars used in navigation for each integer hour of the year would require too much
space in a book. Therefore, sidereal hour angles are tabulated instead of Greenwich hour angles. Since declinations
and sidereal hour angles of stars change only slowly, tabulated values for periods of 3 days are accurate enough for
celestial navigation. GHA is obtained by adding the SHA of the respective star to the current value of GHAAries. 

GHA and Dec for each second of the year are obtained using the interpolation tables at the end of the N.A. (printed
on tinted paper), as explained in the following directions:

1.
We note the exact time of observation (UT), determined with a chronometer and a stopwatch. If UT is not available,
we can use UTC. The resulting error is tolerable in most cases.

2.
We look up the day of observation in the N.A. (two pages cover a period of three days).

3.
We go to the nearest integer hour preceding the time of observation and note GHA and Dec of the observed body. In
case of a fixed star, we form the sum of GHA Aries and the SHA of the star, and note the tabulated declination. When
observing planets, we note the v and d factors given at the bottom of the appropriate column. For the moon, we take v
and d for the nearest integer hour preceding the time of observation.
The quantity v is necessary to apply an additional correction to the following interpolation of the GHA of moon and
planets. It is not required for stars. The sun does not require a v factor since the correction has been incorporated in
the tabulated values for the sun's GHA. 

The quantity d, which is negligible for stars, is the rate of change of Dec, measured in arcminutes per hour. It is
needed for the interpolation of Dec. The sign of d is critical!
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4.
We look up the minute of observation in the interpolation tables (1 page for each 2 minutes of the hour), go to the
second of observation, and note the increment from the respective column.
 
We enter one of the three columns to the right of the increment columns with the v and d factors and note the
corresponding corr(ection) values (v-corr and d-corr). 
The sign of d-corr depends on the trend of declination at the time of observation. It is positive if Dec at the integer
hour following the observation is greater than Dec at the integer hour preceding the observation. Otherwise it is
negative. 

v -corr is negative for Venus. Otherwise, it is always positive.

5.
We form the sum of Dec and d-corr (if applicable).

6.
We form the sum of GHA (or GHA Aries and SHA in case of a star), increment, and v-corr (if applicable).
SHA values tabulated in the Nautical Almanac refer to the true vernal equinox of date.

Interactive Computer Ephemeris

Interactive Computer Ephemeris, ICE, is a computer almanac developed by the U.S. Naval Observatory (successor
of the Floppy Almanac) in the 1980s. 

ICE is FREEWARE (no longer supported by USNO), compact, easy to use, and provides a vast quantity of accurate
astronomical data for a time span of almost 250 (!) years. In spite of the archaic design (DOS program), ICE is still a
useful tool for navigators and astronomers.

Among many other features, ICE calculates GHA and Dec for a given body and time as well as altitude and azimuth of
the body for an assumed position (see chapter 4) and, moreover, sextant altitude corrections. Since the navigation data
are as accurate as those tabulated in the Nautical Almanac (approx. 0.1'), the program makes an adequate alternative,
although a printed almanac (and sight reduction tables) should be kept as a backup in case of a computer failure. The
following instructions refer to the final version (0.51). Only program features relevant to navigation are explained. 

1. Installation
 
Copy the program files to a chosen directory on the hard drive, floppy disk, USB stick, or similar storage device.
ICE.EXE is the executable program file. 

2. Getting Started

DOS users: Change to the program directory and enter "ice" or "ICE ". Windows users can run ICE in a DOS box.

Linux users: Install the DOS emulator "DOSBox". Copy the ICE files to a directory of your choice in your personal
folder. ICE is started through the command “dosbox“, followed by a blank space and the path to the program file:

dosbox /home/<user name>/<program directory>/ICE.EXE   (Note that Linux is case-sensitive.)

After the program has started, the main menu appears.

Use the function keys F1 to F10 to navigate through the submenus. The program is more or less self-explanatory. Go
to the submenu INITIAL VALUES (F1). Follow the directions on the screen to enter date and time of observation (F1),
assumed latitude (F2), assumed longitude (F3), and your local time zone (F6). Assumed latitude and longitude define
your assumed position. Use the correct data format, as shown on the screen (decimal format for latitude and
longitude).

After entering the above data, press F7 to accept the values displayed. To change the default values permanently, edit
the file ice.dft with a text editor (after making a backup copy) and make the desired changes. Do not change the data
format. The numbers have to be in columns 21-40. An output file can be created to store calculated data. Go to the
submenu FILE OUTPUT (F2) and enter a chosen file name, e.g., OUTPUT.TXT.
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3. Calculation of Navigational Data
 
From the main menu, go to the submenu NAVIGATION (F7). Enter the name of the body. The program displays GHA
and Dec of the body, GHA and Dec of the sun (if visible), and GHA of the vernal equinox for the date and time (UT)
stored in INITIAL VALUES.

Hc (computed altitude) and Zn (azimuth) mark the apparent position of the body as observed from the assumed
position. Approximate altitude corrections (refraction, SD, PA), based upon Hc, are also displayed (for lower limb of
body). The semidiameter of the moon includes augmentation.

The coordinates calculated for Venus and Mars do not include the phase correction. Therefore, the upper or lower limb
(if visible) should be observed.

∆T is TT(TDT)-UT, the predicted difference between terrestrial time and UT for the given date.
The ∆T value for 2011.0 predicted by ICE is 74.1s, the actual value is 66.3s (see below) which demonstrates that the
extrapolation algorithm used by ICE is outdated.

Horizontal parallax and semidiameter of a body can be extracted from the submenu POSITIONS (F3). Choose
APPARENT GEOCENTRIC POSITIONS (F1) and enter the name of the body (sun, moon, planets). The last column
shows the distance of the center of the body from the center of the earth, measured in astronomical units (1 AU =
149.6 . 106 km). HP and SD are calculated as follows:

rE is the equatorial radius of the earth (6378 km). rB is the radius of the respective body (Sun: 696260 km, Moon: 1378
km, Venus: 6052 km, Mars: 3397 km, Jupiter: 71398 km, Saturn: 60268 km). 

The apparent geocentric positions refer to TT (TDT), but the difference between TT and UT has no significant effect
on HP and SD. 

To calculate the times of rising and setting of a body, go to the submenu RISE & SET TIMES (F6) and enter the name
of the body. The columns on the right display the time of rising, meridian transit, and setting for the assumed location
(UT+xh, according to the time zone specified).

The increasing error of ∆T values predicted by ICE may lead to reduced precision when calculating navigation data in
the future. The coordinates of the moon are particularly sensitive to errors of ∆T. Unfortunately, ICE has no option for
editing and modifying the internal ∆T algorithm. The high-precision part of ICE, however, is not affected since TT
(TDT) is the time argument.

To circumvent the ∆T problem, extract GHA and Dec using the following procedure:

1. Compute GAST using SIDEREAL TIME (F5). The time argument is UT.

2. Edit date and time at INITIAL VALUES (F1). Now, the time argument is TT (UT+∆T). Compute RA and
Dec using POSITIONS (F3) and APPARENT GEOCENTRIC POSITIONS (F1).
 

3. Use the following formula to calculate GHA from GAST and RA (RA refers to the true vernal equinox of
date):

Add or subtract 360° if necessary.

High-precision GHA and Dec values thus obtained can be used as an internal standard to cross-check medium-
precision data obtained through NAVIGATION (F7).
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r E [km]
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r B[km]
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GHA[° ] = 15⋅GAST [h]  24h − RA[h]



Chapter 4

Finding One's Position (Sight Reduction)

Lines of Position

Any geometrical or physical line passing through the observer's (still unknown) position and accessible through
measurement or observation is called a position line or line of position, LOP. Examples are circles of equal altitude,
meridians, parallels of latitude, bearing lines (compass bearings) of terrestrial objects, coastlines, rivers, roads,
railroad tracks, power lines, etc. A single position line indicates an infinite series of possible positions. The
observer's actual position is marked by the point of intersection of at least two position lines, regardless of their nature.
A position thus found is called fix in navigator's language. The concept of the position line is essential to modern
navigation.

Sight Reduction

Finding a line of position by observation of a celestial object is called sight reduction. Although some background in
mathematics is required to comprehend the process completely, knowing the basic concepts and a few equations is
sufficient for most practical applications. The geometrical background is given in chapter 10 and chapter 11. In the
following, we will discuss the semi-graphic methods developed by Sumner and St. Hilaire. Both methods require
relatively simple calculations only and enable the navigator to plot lines of position on a nautical chart or plotting
sheet (chapter 13).

Knowing altitude and geographic position of a body, we also know the radius of the corresponding circle of equal
altitude (our circular line of position) and the position of its center. As mentioned in chapter 1 already, plotting circles
of equal altitude on a chart is usually impossible due to their large dimensions and the distortions caused by map
projection. However, Sumner and St. Hilaire showed that only a short arc of each circle of equal altitude is needed to
find one's position. Such a short arc can be represented by a secant or a tangent of the circle.

Local Meridian, Local Hour Angle and Meridian Angle

The meridian passing through a given position, usually that of the observer, is called local meridian. In celestial
navigation, the angle between the hour circle of the observed body (upper branch) and the local meridian (upper
branch) plays a fundamental role. On the analogy of the Greenwich hour angle, we can measure this angle westward
from the local meridian (0°...+360°). In this case, the angle is called local hour angle, LHA. It is also possible to
measure the angle westward (0°...+180°) or eastward (0°...�180°) from the local meridian in which case it is called
meridian angle, t. In most navigational formulas, LHA and t can be substituted for each other since the trigonometric
functions return the same results. For example, the cosine of +315° equals the cosine of 45� °.

Like LHA, t is the algebraic sum of the Greenwich hour angle of the body, GHA, and the observer's geographic
longitude, Lon. To make sure that the obtained angle is in the desired range, the following rules have to be applied
when forming the sum of GHA and Lon:

In all calculations, the sign of Lon and t, respectively, has to be observed carefully. The sign convention
(important!) is:

Eastern longitude: positive
Western longitude: negative

Eastern meridian angle: negative
Western meridian angle: positive (like LHA)
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t = {GHA � Lon if GHA � Lon � 180°

GHA � Lon � 360 ° if GHA � Lon � 180° }

LHA = {GHA � Lon if 0 °� GHA �Lon � 360°

GHA � Lon � 360° if GHA � Lon � 0°

GHA � Lon � 360° if GHA � Lon � 360°
}



For reasons of symmetry, we will always refer to the meridian angle in the following considerations (the meridian
angle +t results in the same altitude as the meridian angle t).� Of course, the local hour angle would lead to the same
results.

Fig. 4-1 illustrates the various angles involved in the sight reduction process. The spherical triangle formed by GP,
AP, and the north pole is called navigational (or nautical) triangle (chapter 11). AP is the observer's position (see
intercept method).

Sumner�s Method

In December 1837, Thomas H Sumner, an American sea captain, was on a voyage from South Carolina to Greenock,
Scotland. When approaching St. George's Channel between Ireland and Wales, he managed to measure a single
altitude of the sun after a longer period of bad weather. Using the time sight formula (see chapter 6), he calculated a
longitude from his estimated latitude. Since he was doubtful about his estimate, he repeated his calculations with two
slightly different latitudes. To his surprise, he was able to draw a straight line through the three positions thus
obtained. Accidentally, the line passed through the position of a lighthouse off the coast of Wales (Small's Light). By
intuition, Sumner steered his ship along this line and soon after, Small's Light came in sight. Sumner concluded that
he had found a ''line of equal altitude''. The publication of his method in 1843 marked the beginning of �modern�
celestial navigation [18]. Although rarely used today, it is still an interesting alternative. It is easy to comprehend and
the calculations to be done are quite simple.

Fig. 4-2 illustrates the points where a circle of equal altitude intersects two chosen parallels of latitude.

An observer being between Lat1 and Lat2 is either on the arc A-B or on the arc C-D. With a rough estimate of the

longitude of his position, the observer can easily find on which of the two arcs he is, for example, A-B. The arc thus
found is the relevant part of his line of position, the other arc is discarded. On a chart, we can approximate the line of
position by drawing a straight line through A and B which is a secant of the circle of equal altitude. This secant is
called Sumner line. Before plotting the Sumner line on our chart, we have to find the respective longitude of each
point of intersection, A, B, C, and D.

Procedure:
1.

We choose a parallel of latitude (Lat1) north of our estimated latitude. Preferably, Lat1 should be marked by the nearest

horizontal grid line on our chart or plotting sheet.
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2.
From Lat1 , Dec, and the observed altitude, Ho, we calculate the meridian angle, t, using the following formula:

The equation is derived from the navigational triangle (chapter 10 & chapter 11). It has two solutions, +t and �t, since
the cosine of +t equals the cosine of �t. Geometrically, this corresponds with the fact that the circle of equal altitude
intersects the parallel of latitude at two points. Using the following formulas and rules, we obtain the longitudes of
these two points of intersection, Lon and Lon':

Comparing the longitudes thus obtained with our estimate, we select the most probable longitude and discard the other
one. This method of finding one's longitude is called time sight (chapter 6).

3.
We choose a parallel of latitude (Lat2) south of our estimated latitude. The difference between Lat1 and Lat2 should not 

exceed 1 or 2 degrees. We repeat steps 1 and 2 with the second latitude, Lat2.

4.
On our plotting sheet, we mark both remaining longitudes, either one on its corresponding parallel of latitude, and
plot the Sumner line through the points thus located (LOP1, see Fig. 4-3 ).

Using the same parallels of latitude, we repeat steps 1 through 4 with the declination and observed altitude of a second
body. The point where the Sumner line thus obtained, LOP2, intersects LOP1 is our fix.

If we have only a very rough estimate of our latitude, the point of intersection may be outside the interval defined by
both parallels, but the fix is still correct. Any fix obtained with Sumner's method has a small error caused by
neglecting the curvature of the circles of equal altitude. We can improve the fix by iteration. For this purpose, we take
a chart with a larger scale, choose a new pair of assumed latitudes, nearer to the fix, and repeat the procedure with the
same altitudes. Ideally, the horizontal angular distance between both bodies should be 90° (30°...150° is tolerable).
Otherwise, the fix would become indistinct. Neither of the bodies should be near the local meridian, otherwise the
resulting LOP would be difficult to plot. Sumner's method has the (small) advantage that no protractor is needed to
plot lines of position.

The Intercept Method

This procedure was developed by the French navy officer St. Hilaire and others and was first published in 1875. After
that, it gradually became the standard for sight reduction since it avoids some of the restrictions of Sumner's method.
Although the background is more complicated than with Sumner's method, the practical application is very
convenient.
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t = ± arccos
sin Ho � sin Lat �sin Dec

cos Lat�cos Dec

Lon = �t�� GHA

Lon ' = 360° ��t�� GHA

If Lon ��180° � Lon � 360°

If Lon ' ��180 ° � Lon' � 360°

If Lon ' ��180 ° � Lon' � 360°



Theory:

For any given position of the observer, the geocentric altitude of a celestial body is solely a function of the observer's
latitude, the declination of the body, and the meridian angle (or local hour angle).

The altitude formula is obtained by applying the law of cosines for sides to the navigational triangle (chapter 10 &
11):

We choose an arbitrary point on our nautical chart which is not too far from our estimated position. Preferably this is
the nearest point where two grid lines on the chart intersect. This point is called assumed position, AP (Fig. 4-4).
Using the above formula, we calculate the altitude of the body resulting from LatAP and LonAP, the geographic

coordinates of AP. The altitude thus obtained is called computed or calculated altitude, Hc.

Usually, Hc will slightly differ from the actually observed altitude, Ho (chapter 2). The difference, �H, is called
intercept.

Ideally (no observation errors), Ho and Hc would be identical if the observer were exactly at AP.

In the following, we will discuss which possible positions of the observer would result in the same intercept, �H. For
this purpose, we assume that the intercept is an infinitesimal quantity and denote it by dH. The general formula is:

This differential equation has an infinite number of solutions. Since dH and both differential coefficients are constant,
it can be reduced to a linear equation of the general form:

Thus, the graph is a straight line, and it is sufficient to dicuss two special cases, dt=0 and dLat=0, respectively.

In the first case, the observer is on the same meridian as AP, and the small change dH is solely caused by a small
variation of latitude, dLat, whereas t is constant (dt = 0). We differentiate the altitude formula with respect to Lat:

Adding dLat to LatAP, we obtain the point P1, as illustrated in Fig.4-4. P1 is on the circle of equal altitude.
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H = arcsin �sin Lat �sin Dec � cos Lat �cos Dec�cos t 	


 H = Ho � Hc

dH =
� H

� Lat
�d Lat �

� H

� t
�dt

d Lat = a � b�dt

sin H = sin Lat �sin Dec � cos Lat�cos Dec �cos t

d �sin H 	 = �cos Lat �sin Dec � sin Lat �cos Dec�cos t	�d Lat

cos H �dH = �cos Lat �sin Dec � sin Lat�cos Dec�cos t 	�d Lat

d Lat =
cos H

cos Lat �sin Dec � sin Lat �cos Dec �cos t
�dH

H = f �Lat , Dec , t 	



In the second case, the observer is on the same parallel of latitude as AP, and dH is solely caused by a small change of
the meridian angle, dt, whereas Lat is constant (dLat=0). Again, we begin with the altitude formula:

Differentiating with respect to t, we get

Adding dt (corresponding with an equal change of longitude, dLon) to LonAP, we obtain the point P2 which is on the
same circle of equal altitude. Thus, we would measure Ho at P1 and P2, respectively. Knowing P1 and P2, we can now
plot a straight line passing through these positions. This line, a tangent of the circle of equal altitude, is our
approximate line of position, LOP. The great circle passing through AP and GP is represented by a straight line
perpendicular to the line of position, called azimuth line. The arc between AP and GP is the radius of the circle of
equal altitude. The distance between AP and the point where the azimuth line intersects the line of position is the
intercept, dH. The angle formed by the azimuth line and the local meridian of AP is called azimuth angle, Az. The
same angle is measured between the line of position and the parallel of latitude passing through AP (Fig. 4-4).

There are several ways to derive Az and the true azimuth, AzN, from the right (plane) triangle defined by the vertices

AP, P1, and P2:

Time-Altitude Azimuth:

Alternatively, this formula can be derived from the navigational triangle (law of sines and cosines, chapter 10 &
chapter 11). Az is not necessarily identical with the true azimuth, AzN, since the arccos function returns angles

between 0° and +180°, whereas AzN is measured from 0° to +360°. To obtain AzN, we have to apply the following

rules after calculating Az with the formula for time-altitude azimuth:

Time Azimuth:

The factor cos Lat is the relative circumference of the parallel of latitude on which AP is located (equator = 1).

The time azimuth formula is also derived from the navigational triangle (law of cotangents, chapter 10 & chapter 11).
Knowing the altitude is not necessary. This formula requires a different set of rules to obtain AzN:
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sin H = sin Lat �sin Dec � cos Lat�cos Dec �cos t

d �sin H 	 = �cos Lat�cos Dec�sin t �dt

cos H �dH = �cos Lat �cos Dec �sin t �dt

dt = �
cos H

cos Lat �cos Dec�sin t
�dH

cos Az =
dH

d Lat
=

cos Lat �sin Dec � sin Lat �cos Dec�cos t

cos H

Az = arccos
cos Lat �sin Dec � sin Lat �cos Dec�cos t

cos H

AzN = {Az if t < 0° (180° < LHA < 360°)
360° � Az if t > 0° (0° < LHA < 180° ) }

tan Az =
d Lat

cos Lat �dt
=

sin t

sin Lat�cos t � cos Lat � tan Dec

Az = arctan
sin t

sin Lat �cos t � cos Lat � tan Dec

Az N = {Az if numerator � 0 AND denominator � 0

Az � 360 ° if numerator � 0 AND denominator � 0

Az � 180 ° if denominator � 0
}



Calculating the time azimuth is more convenient with the arctan2 (= atan2) function. The latter is part of many
programming languages and spreadsheet programs and eliminates the quadrant problem. Thus, no conversion rules
are required to obtain AzN. In an OpenOffice spreadsheet, for example, the equation would have the following format:

Altitude Azimuth:

This formula, preferred by many navigators, is directly derived from the navigational triangle (cosine law, chapter 10
& chapter 11) without using differential calculus.

As with the formula for time-altitude azimuth, AzN is obtained through application of these rules:

Azimuth by the Law of Sines:

The azimuth can also be obtained by application of the law of sines (chapter 10 & chapter 11). The formula does not
require the latitude to be known. To simplify the procedure, we calculate with the absolute value of the meridian angle.

This method has the disadvantage of ambiguity since the sine of any given angle, �, equals the sine of its supplement,

180°-�. To obtain the two solutions for the true azimuth, Az
N1

 and Az
N2

, we apply the following rules:

To find out which of the two solutions is the one we are looking for, we have to compare them with the compass
bearing of the observed body. The difference between both solutions becomes small as Az approaches 90°. In such a
case, a clear distinction may be impossible, and the sight should be discarded.

Fig. 4-5 shows a macroscopic view of the line of position, the azimuth line, and the circles of equal altitude. In
contrast to dH, �H is a measurable quantity. Further, the position line is curved.
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cos Az =
sin Dec � sin H �sin Lat

cos H �cos Lat

Az = arccos
sin Dec � sin H �sin Lat

cos H�cos Lat

Az N = {Az if t � 0 �180° � LHA � 360° 	

360° � Az if t � 0 �0° � LHA � 180 °	 }

Az N = DEGREES �Pi �	 � ATAN2 �denominator ; numerator	 	

Az = arcsin
cos Dec �sin� t �

cos Ho

AzN1 = {Az if t < 0° (180° < LHA < 360°)
360° � Az if t > 0° (0° < LHA < 180°) }

AzN2 = {180°�Az if t < 0° (180° < LHA < 360°)
180°+ Az if t > 0 ° (0° < LHA < 180 °) }



Procedure for the Intercept Method:

Although the theory of the intercept method may look complicated at first glance, the practical application is very
simple and does not require any background in differential calculus. The procedure comprises the following steps:

1.
We choose an assumed position, AP (see Fig. 4-1), which should be near to our estimated position. Preferably, AP
should be defined by an integer number of degrees or arcminutes for LatAP and LonAP, respectively, depending on the

scale of the chart we are using. Our estimated position itself may be used as well, but plotting a position line is easier
when putting AP on a point on the chart where two grid lines intersect.

2.
We calculate the meridian angle, tAP, (or the local hour angle, LHAAP) from GHA and LonAP, as shown earlier.

3.
We calculate the geocentric altitude of the observed body as a function of LatAP, tAP, and Dec (computed altitude):

4.
We calculate the true azimuth of the body, AzN, for example with the altitude azimuth formula:

5.
We calculate the intercept, �H, the difference between observed altitude, Ho (chapter 2), and computed altitude, Hc.
The intercept, which is directly proportional to the difference between the radii of the corresponding circles of equal
altitude, is usually expressed in nautical miles:

6.
We take a chart or plotting sheet with a convenient scale (depending on the respective scenario), and draw a suitable
length of the azimuth line through AP (Fig. 4-6). On this line, we measure the intercept, �H, from AP (towards GP if
�H>0, away from GP if �H<0) and draw a perpendicular through the point thus located. This perpendicular to the
azimuth line is our approximate line of position (the red line in Fig. 4-6).

7.
To obtain our position, we need at least one additional position line. We repeat the procedure with altitude and GP of a
second celestial body or of the same body at a different time of observation (Fig. 4-7). The point where both position
lines (tangents) intersect is our fix. The second observation does not necessarily require the same AP to be used.
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Hc = arcsin �sin Lat AP�sin Dec � cos Lat AP�cos Dec�cos t AP	

Az = arccos
sin Dec � sin Hc�sin Lat AP

cos Hc�cos Lat AP

Az N = {Az if t � 0 �180° � LHA � 360° 	

360° � Az if t � 0 �0° � LHA � 180 °	 }


 H [nm ] = 60�� Ho[° ] � Hc [° ] 	



Since the intercept method ignores the curvatures of the actual position lines, the obtained fix is not our exact position
but rather an improved position (compared with AP). The residual error remains tolerable as long as the radii of the
circles of equal altitude are not too small and AP is not too far from our actual position (chapter 16). The geometric
error inherent to the intercept method can be decreased by iteration, i.e., substituting the obtained fix for AP and
repeating the calculations (same altitudes and GP's). This will result in a more accurate position. If necessary, we can
reiterate the procedure until the obtained position remains virtually constant (rarely needed).

Accuracy is also improved by observing three bodies instead of two. Theoretically, the position lines should intersect
each other at a single point. Since no observation is entirely free of errors, we will usually obtain three points of
intersection forming an error triangle (Fig. 4-8).

Area and shape of the error triangle give us a rough estimate of the quality of our observations (chapter 16). Our most
probable position, MPP, is approximately (!) represented by the �center of gravity� of the error triangle (the point
where the bisectors of the three angles of the error triangle meet). 

When observing more than three bodies, the resulting position lines will form the corresponding polygons.

Direct Computation

If we do not want to plot lines of position to determine our fix, we can calculate the most probable position directly
from an unlimited number of observations, n (n > 1). The Nautical Almanac provides an averaging procedure based
on statistical methods. First, the auxiliary quantities A, B, C, D, E, and G have to be calculated.

4-8

A = 
i = 1

n

cos
2
Az i

B = 
i = 1

n

sin Az i�cos Azi



In the above formulas, Azi denotes the true azimuth of the respective body. The H� values are measured in degrees

(same unit as Lon and Lat). The geographic coordinates of the observer's MPP are then obtained as follows:

The method does not correct for the geometric errors caused by the curvatures of position lines. Again, these are
eliminated, if necessary, by iteration. For this purpose, we substitute the calculated MPP for AP. For each body, we
calculate new values for t (or LHA), Hc, H� , and AzN. With these values, we recalculate A, B, C, D, E, G, Lon, and

Lat.

Upon repeating this procedure, the resulting positions will converge rapidly. In the majority of cases, less than two
iterations will be sufficient, depending on the distance between AP and the true position.

Combining Different Lines of Position

Since the point of intersection of any two position lines, regardless of their nature, marks the observer's geographic
position, one celestial LOP may suffice to find one's position if another LOP of a different kind is available.

In a desert devoid of any landmarks, for instance, we can determine our current position by finding the point on the
map where a position line obtained by observation of a celestial object intersects the dirt road we are travelling on
(Fig. 4-9).

We can as well find our position by combining our celestial LOP with the bearing line of a distant mountain peak or
any other prominent landmark (Fig. 4-10). B is the compass bearing of the terrestrial object (corrected for magnetic
declination).
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C = 
i = 1

n

sin
2
Azi

D = 
i =1

n

�
 H 	i �cos Az i

E = 
i = 1

n

�
 H 	i �sin Az i

G = A�C � B
2

Lon = LonAP �
A�E � B� D

G�cos Lat AP

Lat = LatAP �
C �D � B�E

G



Both examples demonstrate the versatility of position line navigation.

4-10



Chapter 5 

Finding the Position of an Advancing Vessel

Celestial navigation on an advancing vessel requires a correction for the change of position between subsequent
observations unless the latter are performed in rapid succession or, better, simultaneously by two observers.

If the navigator knows the speed of the vessel, v, and the course over ground, C (the angle formed by the vector of
motion and the local meridian), position line navigation provides a simple graphic solution.

Assuming that we make our first observation at the time T1 and our second observation at T2, the distance, d, traveled

during the time interval T2-T1 is

1 kn (knot) = 1 nm/h
  
Although we have no knowledge of our absolute position yet, we know our second position relative to the first one,
defined by C and d. 

To find the absolute position, we plot both position lines in the usual manner, as illustrated in chapter 4. Next, we
choose an arbitrary point on the first position line, LOP1, (resulting from the observation at T1) and advance this point

according to the motion vector defined by the distance d and the course C. Finally, we draw a parallel of the first
position line through the point thus located. The point where this advanced position line intersects the second line of
position (resulting from the observation at T2) marks our position at the time T2. A position obtained in this fashion is

called running fix (Fig. 5-1).

In a similar manner, we can obtain our position at T1 by retiring the second position line, LOP2. In this case we have

to substitute C ± 180° for C (Fig. 5-2).
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Terrestrial lines of position may be advanced or retired in the same way as astronomical position lines.

It is also possible to choose two different assumed positions. AP1 should be close to the estimated position at T1, AP2
close to the estimated position at T2 (Fig. 5-3).

A running fix is not as accurate as a stationary fix. For one thing, course and speed over ground can only be estimated
since the effects of current and wind (drift) are not exactly known in most cases.

Further, there is a geometrical error inherent to the method. The latter is based on the assumption that each point of
the circle of equal altitude, representing a possible position of the vessel, travels the same distance, d, along the
rhumb line (chapter 12) defined by the course, C. The result of such an operation, however, is a slightly distorted
circle. Consequently, an advanced or retired LOP is not exactly parallel to the original LOP. The resulting position
error usually increases as the distance, d, increases [19]. The procedure gives fairly accurate results when the distance
traveled between the observations is smaller than approx. 60 nm.
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Chapter 6

Determination of Latitude and Longitude, Finding a Position by Direct Calculation

Latitude by Polaris

The geocentric altitude of a celestial object being at the celestial north pole would be numerically equal to the latitude
of the observer's position (Fig. 6-1).

This is nearly the case with Polaris, the pole star. However, since the declination of Polaris is not exactly 90° (89°
16.0' in 2000.0), the altitude of Polaris is influenced by the local hour angle. The altitude of Polaris is also affected, to
a lesser degree, by nutation. To obtain the accurate latitude from the observed altitude, several corrections are
necessary:

The corrections a0, a1, and a2, respectively, depend on LHAAries (estimated), the observer's estimated latitude, and the

number of the current month. They are given in the Polaris Tables of the Nautical Almanac [12]. To extract the data,
the observer has to know his approximate position and the approximate time.

Unfortunately, the Nautical Almanac does not provide GHA and Dec for Polaris. When using a computer almanac,
however, we can find Lat with the following simple procedure. LatE is our estimated latitude, Dec is the declination of

Polaris, and tE is the estimated meridian angle of Polaris (calculated from GHA and our estimated longitude). Hc is the

computed altitude, Ho is the observed altitude (chapter 4).

Adding the altitude difference, �H, to the estimated latitude, we obtain the improved latitude:

The improved latitude is accurate to 0.1' when LatE is smaller than 70° and when the error of LatE is smaller than 2°,

provided the exact longitude is known. At higher latitudes, the algorithm becomes less accurate and is not
recommended. The method even tolerates a longitude error of up to 1°, in which case the resulting latitude error is still
smaller than 1'. Latitude by Polaris is basically a variant of the ex-meridian sight. A rigorous procedure is given
further below.
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Lat = Ho � 1 ° � a0 � a1 � a2

Hc = arcsin �sin Lat E �sin Dec � cos Lat E �cos Dec�cos t E�

� H = Ho � Hc

Latimproved � Lat E � � H



Noon Latitude (Latitude by Maximum Altitude)

This is a very simple method enabling the observer to determine the latitude of his position by measuring the
maximum altitude of the sun (or any other object). A very accurate time measurement is not required. The altitude of
the sun passes through a flat maximum approximately (see noon longitude) at the moment of upper meridian passage
(local apparent noon, LAN) when t equals 0 and the GP of the sun is either north or south of the observer, depending
on the declination of the sun and the observer�s geographic latitude. The latter is easily calculated by forming the
algebraic sum or difference of the declination and observed zenith distance z (90°-Ho) of the sun, depending on
whether the sun is north or south of the observer (Fig. 6-2).

1. Sun south of observer (Fig. 6-2a):  Lat = Dec � z = Dec � Ho � 90°

2. Sun north of observer (Fig. 6-2b):  Lat = Dec � z = Dec � Ho � 90°

Northern declination is positive, southern declination negative.

Before starting the observations, we need a rough estimate of our current longitude to know the time of meridian
transit. We look up the time (UT) of Greenwich meridian transit of the sun on the daily page of the Nautical Almanac
and add 4 minutes for each degree of western longitude or subtract 4 minutes for each degree of eastern longitude. To
determine the maximum altitude, we start observing the sun approximately 15 minutes before the expected meridian
transit. We follow the increasing altitude of the sun with the sextant, note the maximum altitude when the sun starts
descending again, and apply the usual corrections. 

We look up the declination of the sun at the approximate time (UT) of local meridian passage on the daily page of the
Nautical Almanac and apply the appropriate formula. 

The method may produce erratic results when the sun culminates close to the zenith, in which case it is difficult to
find if the sun is north or south of the observer. Historically, noon latitude and latitude by Polaris are among the oldest
methods of celestial navigation.

Ex-Meridian Sight

Sometimes, it may be impossible to measure the maximum altitude of a body. For example, the latter may be obscured
by a cloud at the instant of culmination. If we have a chance to measure the altitude some time before or after meridian
transit, we are still able to find our latitude, provided we know our exact longitude.

First, we use the law of sines to calculate the azimuth angle from Ho, Dec, and t (see chapter 10 & 11). This formula
does not require the latitude to be known (compare with the azimuth formulas given in chapter 4). To simplify the
procedure, we replace the meridian angle, t, with its absolute value, |t|. We can do this because Ho is independent of
the sign of t (symmetry!).

Since sin Az = sin (180°- Az), the equation has two solutions, Az and its supplement angle, 180°-Az. This is
illustrated by the fact that the circle of equal altitude usually intersects the local meridian at two points of different
latitude.
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sin Az =
cos Dec�sin�t�

cos Ho
Az = arcsin

cos Dec �sin�t�
cos Ho



We enter the following formula, which is based on Napier�s analogies (chapter 11), with Az. Afterwards we repeat the
calculation with the supplement angle, 180°-Az.

We obtain two latitudes, LatAz and Lat180°-Az. We chose the one which is nearest to our estimated latitude. The sight has
to be discarded when the difference between the two calculated latitudes is too small for a clear distinction, depending
on the reliability of our estimate. Both calculated latitudes merge as Az approaches 90°. Critical judgement is
required.

With the advent of the intercept method, the ex-meridian sight became more or less obsolete and is mainly of
historical interest today. Often the navigator knows his latitude better than his longitude. The latter can then easily be
obtained by a time sight (see below).

Latitude by two altitudes

Even if the longitude is unknown, the exact latitude can still be found by observation of two celestial bodies. The
required quantities are Greenwich hour angle (or sidereal hour angle), declination, and the observed altitude of each
body [7].
The calculations are based upon spherical triangles (see chapter 10 & chapter 11). In Fig. 6-3, PN denotes the north

pole, O the observer�s unknown position, GP1 the geographic position of the first body, and GP2 the position of the

second body.

First, we consider the spherical triangle [GP1, PN, GP2]. Fig. 6-3 shows only one of several possible configurations. O

may as well be outside the triangle [GP1, PN, GP2]. GHA� is the difference between both Greenwich hour angles

which is equal to the difference between both sidereal hour angles:

Using the law of cosines for sides (chapter 10), we calculate d, the great circle distance between GP1 and GP2:
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cos d = sin Dec1�sin Dec2 � cos Dec1�cos Dec2�cos�� GHA �

d = arccos [ sin Dec1�sin Dec2 � cos Dec1�cos Dec2 �cos�� GHA � ]
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�t�� Az

2
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Now we solve the same triangle for the angle , the horizontal distance between P� N and GP2, measured at GP1:

For the spherical triangle [GP1, O, GP2], we calculate the angle ,� the horizontal distance between O and GP2,

measured at GP1.

We calculate the angle ,� the horizontal distance between PN and O, measured at GP1. There are two solutions, �1 and

�2, since cos  = cos (- ):� �

The circles of equal altitude intersect each other at two points. The corresponding positions are on opposite sides of the
great circle going through GP1 and GP2 (not shown in Fig. 6-3). Using the law of cosines for sides again, we solve the

spherical triangle [GP1, PN, O] for Lat. Since we have two solutions for ,� we obtain two possible latitudes, Lat1 and

Lat2.

We choose the value nearest to our estimated latitude. The other one is discarded. If both solutions are very similar
and a clear distinction is not possible, one of the sights should be discarded, and a body with a more favorable position
should be chosen.

Although the method requires more complicated calculations than, e. g., a latitude by Polaris, it has the advantage that
measuring two altitudes usually takes less time than finding the maximum altitude of a single body. Moreover, if fixed
stars are observed, even a chronometer error of several hours has no significant influence on the resulting latitude
since sidereal hour angles and declinations of stars change rather slowly. If the exact time of observation is known,
even the observer's longitude and, thus, his position can be calculated precisely (see end of chapter).

When the horizontal distance between the observed bodies is in the vicinity of 0° or 180°, the observer's position is
close to the great circle going through GP1and GP2. In this case, the two solutions for latitude are similar, and finding

which one corresponds with the actual latitude may be difficult (depending on the quality of the estimate). The
resulting latitudes are also close to each other when the observed bodies have approximately the same Greenwich hour
angle.

Noon Longitude (Longitude by Equal Altitudes)

Since the earth rotates with an angular velocity of exactly 15° per hour with respect to the mean sun, the time of local
meridian transit (local apparent noon) of the sun, TTransit, can be used to calculate the observer's longitude:
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cos	 =
sin Dec2 � sin Dec1�cosd

cos Dec1�sin d

	 = arccos
sin Dec2 � sin Dec1�cos d
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cos H 1�sin d
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sin Lat 1 = sin H 1�sin Dec1 � cos H 1�cos Dec1�cos�1

Lat 1 = arcsin �sin H 1�sin Dec1 � cos H 1�cos Dec1�cos� 1�

sin Lat 2 = sin H 1�sin Dec1 � cos H 1�cos Dec1�cos� 2

Lat2 = arcsin �sin H 1�sin Dec1 � cos H 1�cos Dec1�cos�2�

Lon [° ] = 15� �12 � T Transit [h] � EoT Transit [h ]�



TTransit is measured as UT (decimal format).

The correction for EoT at the time of meridian transit, EoTTransit, has to be made because the apparent sun, not the

mean sun, is observed (see chapter 3).

Since the Nautical Almanac contains only values for EoT (see chapter 3) at 0:00 UT and 12:00 UT of each day,
EoTTransit has to be found by interpolation. 

Since the altitude of the sun - like the altitude of any celestial body - passes through a rather flat maximum, the instant
of peak altitude is difficult to measure. The exact time of meridian transit can be derived, however, from the times of
two equal altitudes of the sun.

 
Assuming that the sun moves along a symmetrical arc in the sky, TTransit is the arithmetic mean of the times

corresponding with a chosen pair of equal altitudes of the sun, one occurring before LAN, T1, the other past LAN, T2

(Fig. 6-4).

        

In practice, the times of equal altitudes of the sun are measured as follows:

In the morning, the observer records the time T1 corresponding with a chosen altitude, H. In the afternoon, the time T2

is recorded when the descending sun passes through the same altitude again. Since only times of equal altitudes are
measured, no altitude correction is required. The interval T2-T1 should be greater than approx. 2 hours. 

Unfortunately, the arc of the sun is only symmetrical with respect to TTransit if the sun's declination is constant during

the observation interval. This is approximately the case around the times of the solstices. During the rest of the year,
particularly at the times of the equinoxes, TTransit differs significantly from the mean of T1 and T2 due to the changing

declination of the sun. Fig. 6-5 shows the altitude of the sun as a function of time and illustrates how the changing
declination affects the apparent path of the sun in the sky, resulting in a time difference, �T.

The blue line shows the path of the sun for a given, constant declination, Dec1. The red line shows how the path would

look with a different declination, Dec2. In both cases, the apparent path of the sun is symmetrical with respect to

TTransit. However, if the sun's declination varies from Dec1 at T1 to Dec2 at T2, the path shown by the green line will

result.

Now, T1 and T2 are no longer symmetrical to Ttransit.

The sun's meridian transit occurs before (T1+T2)/2 if the sun's declination changes toward the observer's parallel of

latitude, like shown in Fig. 6-5. Otherwise, the meridian transit occurs after (T1+T2)/2. Since time and local hour

angle (or meridian angle) are proportional to each other, a systematic error in longitude results.  
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T Transit =
T 1 � T 2
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The error in longitude is negligible around the times of the solstices when Dec is almost constant, and is greatest (up
to several arcminutes) at the times of the equinoxes when the rate of change of Dec is greatest (approx. 1'/h).
Moreover, the error in longitude increases with the observer's latitude and may be quite dramatic in polar regions.

The obtained longitude can be improved, if necessary, by application of the equation of equal altitudes [5]:

�t is the change in the meridian angle, t, which cancels the change in altitude resulting from a small change in
declination, �Dec. Lat is the observer's latitude. If the accurate latitude is not known, an estimated latitude may be
used. t2 is the meridian angle of the sun at T2. Since we do not know the exact value for t2 initially, we start our

calculations with an approximate value calculated from T1 and T2:

We denote the improved value for T2 by T2*.

At T2*, the sun would pass through the same altitude as measured at T1 if Dec did not change during the interval of

observation.

Accordingly, the improved time of meridian transit is:

The residual error resulting from the initial error of t2 is usually not significant. It can be decreased, if necessary, by

iteration. Substituting T2* for T2, we get the improved meridian angle, t2*:

With the improved meridian angle t2*, we calculate the improved correction t� *:

Finally, we obtain a more accurate time value, T2**:

And, accordingly:

The error of �Dec should be as small as possible. Calculating �Dec with a high-precision computer almanac is
preferable to extracting it from the Nautical Almanac.
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When using the Nautical Almanac, �Dec should be calculated from the daily change of declination to keep the
rounding error as small as possible.

Although the equation of equal altitudes is strictly valid only for an infinitesimal change of Dec, dDec, it can be used
for a measurable change, Dec,� (up to several arcminutes) as well without sacrificing much accuracy. Accurate time
measurement provided, the residual error in longitude rarely exceeds ±0.1'.

Theory of the Equation of Equal Altitudes

The equation of equal altitudes is derived from the altitude formula (see chapter 4) using differential calculus:

First, we need to know how a small change in declination would affect sin H. We form the partial derivative with
respect to Dec:

Thus, the change in sin H caused by an infinitesimal change in declination, d Dec, is:

Now, we form the partial derivative with respect to t in order to find out how a small change in the meridian angle
would affect sin H:

The change in sin H caused by an infinitesimal change in the meridian angle, dt, is:

Since we want both effects to cancel each other, the total differential has to be zero:
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Longitude Measurement on an Advancing Vessel

On an advancing vessel, we have to take into account not only the influence of varying declination but also the effects
of changing latitude and longitude on the altitude of the body during the observation interval.
Differentiating sin H (altitude formula) with respect to Lat, we get:

Again, the total differential is zero because the combined effects of latitude and meridian angle cancel each other with
respect to their influence on sin H:

In analogy with a change in declination, we obtain the following formula for a small change in latitude:

The correction for the combined variations in Dec, Lat, and Lon is:

�Lat and �Lon are the small changes in latitude and longitude corresponding with the path of the vessel traveled
between T1 and T2. The meridian angle, t2, has to include a correction for Lon:�

Lat and Lon� �  are calculated from the course over ground, C, the velocity over ground, v, and the time elapsed.

C is measured clockwise from true north (0°...360°). Again, the corrected time of equal altitude is:

The longitude calculated from TTransit refers to the observer's position at T1. The longitude at T2 is Lon+�Lon.

The longitude error caused by a change in latitude can be dramatic and requires the navigator's particular attention,
even if the vessel travels at a moderate speed.
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The above considerations clearly demonstrate that determining one's exact longitude by equal altitudes of the sun is
not as simple as it seems to be at first glance, particularly on a moving vessel. It is therefore quite natural that with the
development of position line navigation (including simple graphic solutions for a traveling vessel), longitude by equal
altitudes became less important.

   

The Meridian Angle of the Sun at Maximum Altitude

Fig. 6-5 shows that the maximum altitude of the sun is slightly different from the altitude at the moment of meridian
passage if the declination changes. At maximum altitude, the rate of change of altitude caused by the changing
declination cancels the rate of change of altitude caused by the changing meridian angle.
The equation of equal altitude enables us to calculate the meridian angle of the sun at this moment. We divide each
side of the equation by the infinitesimal time interval dT:

Measuring the rate of change of t and Dec in arcminutes per hour we get:

Since t is a very small angle, we can substitute tan t for sin t: 

Now, we can solve the equation for tan t:

Since a small angle (in radians) is nearly equal to its tangent, we get:

Measuring t in arcminutes, the equation is stated as:

dDec/dT is the rate of change of declination measured in arcminutes per hour.

The maximum altitude occurs after meridian transit if t is positive, and before meridian transit if t is negative.

For example, at the time of the spring equinox (Dec ≈ 0, dDec/dT ≈ +1'/h) an observer being at +80° (N) latitude

would observe the maximum altitude of the sun at t ≈ +21.7', i. e., 86.8 seconds after local meridian transit (LAN). An

observer at +45° latitude, however, would observe the maximum altitude at t ≈ +3.82', i. e., only 15.3 seconds after

meridian transit.

The Maximum Altitude of the Sun

We can use the last equation to evaluate the systematic error of a noon latitude. The latter is based upon the maximum
altitude of the sun, not on the altitude at the moment of meridian transit. Following the above example, the observer at
80° latitude would observe the maximum altitude 86.7 seconds after meridian transit.
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During this interval, the declination of the sun would have changed from 0 to +1.445'' (assuming that Dec is 0 at the
time of meridian transit). Using the altitude formula (chapter 4), we get:

In contrast, the calculated altitude at meridian transit would be exactly 10°. Thus, the error of the noon latitude would
be -0.72''.

In the same way, we can calculate the maximum altitude of the sun observed at 45° latitude:

In this case, the error of the noon latitude would be only -0.13''.

The above examples show that even at the times of the equinoxes, the systematic error of a noon latitude caused by the
changing declination of the sun is not significant because it is much smaller than other observational errors, e. g., the
errors in dip or refraction. A measurable error in latitude can only occur if the observer is very close to one of the poles
(tan Lat!). Around the times of the solstices, the error in latitude is practically non-existent.

Time Sight

The process of deriving the longitude from a single altitude of a body (as well as the observation made for this
purpose) is called time sight. This method requires knowledge of the exact latitude, e. g., a noon latitude. Solving the
navigational triangle (chapter 11) for the meridian angle, t, we get:

The equation has two solutions, +t and �t, since cos t = cos (�t). Geometrically, this corresponds with the fact that the
circle of equal altitude intersects the parallel of latitude at two points.

Using the following formulas and rules, we obtain the longitudes of these points of intersection, Lon1 and Lon2:

Even if we do not know the exact latitude, we can still use a time sight to derive a line of position from an assumed
latitude. After solving the time sight, we plot the assumed parallel of latitude and the calculated meridian.
Next, we calculate the azimuth of the body with respect to the position thus obtained (azimuth formulas, chapter 4)
and plot the azimuth line. Our line of position is the perpendicular of the azimuth line going through the calculated
position (Fig. 6-6). 
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Finding a LOP by time sight is mainly of historical interest. The modern navigator will certainly prefer the intercept
method (chapter 4) which can be used without any restrictions regarding meridian angle (local hour angle), latitude,
and declination (see below).

A time sight is not reliable when the body is close to the meridian. Using differential calculus, we can demonstrate
that the error of the meridian angle, dt, resulting from an altitude error, dH, varies in proportion with 1/sin t:

Moreover, dt varies inversely with cos Lat and cos Dec. Therefore, high latitudes and declinations should be avoided
as well. The same restrictions apply to Sumner's method which is based upon two time sights.

Direct Computation of a Position

If we know the exact time, the observations for a latitude by two altitudes even enable us to calculate our position
directly, without graphic plot. After obtaining our latitude, Lat, from two altitudes (see above), we use the time sight
formula to calculate the meridian angle of one of the bodies. In case of the first body, for example, we calculate t1 from

the quantities Lat, Dec1, and H1 (see Fig. 6-3). Two possible longitudes result from the meridian angle thus obtained.

We choose the one nearest to our estimated longitude. This is a rigorous method, not an approximation.

In a similar manner, a position can be found by combining a noon longitude with an ex-meridian sight.

Direct computation is rarely used since the calculations are more complicated than those required for graphic
solutions. Of course, in the age of computers the complexity of the method does not present a problem anymore.

6-11

dt = �
cosHo

cos Lat�cosDec�sin t
�dH



Chapter 7

Finding Time and Longitude by Lunar Distances

In celestial navigation, time and longitude are interdependent. Finding one�s longitude at sea or in unknown terrain is
impossible without knowing the exact time and vice versa. Therefore, old-time navigators were basically restricted to
latitude sailing on long voyages, i. e., they had to sail along a chosen parallel of latitude until they came in sight of the
coast. Since there was no reliable estimate of the time of arrival, many ships ran ashore during periods of darkness or
bad visibility. Spurred by heavy losses of men and material, scientists tried to solve the longitude problem by using
astronomical events as time marks. In principle, such a method is only suitable when the observed time of the event is
virtually independent of the observer�s geographic position.

Measuring time by the apparent movement of the moon with respect to the background of fixed stars was suggested in
the 15th century already (Regiomontanus) but proved impracticable since neither reliable ephemerides for the moon nor
precise instruments for measuring angles were available at that time.

Around the middle of the 18th century, astronomy and instrument making had finally reached a stage of development
that made time measurement by lunar observations possible. Particularly, deriving the time from a so-called lunar
distance, the angular distance of the moon from a chosen reference body, became a popular method. Although the
procedure is rather cumbersome, it became an essential part of celestial navigation and was used far into the 19 th

century, long after the invention of the mechanical chronometer (Harrison, 1736). This was mainly due to the limited
availability of reliable chronometers and their exorbitant price. When chronometers became affordable around the
middle of the 19th century, lunar distances gradually went out of use. Until 1906, the Nautical Almanac included lunar
distance tables showing predicted geocentric angular distances between the moon and selected bodies in 3-hour
intervals.* After the tables were dropped, lunar distances fell more or less into oblivion. Not much later, radio time
signals became available world-wide, and the longitude problem was solved once and for all. Today, lunar distances
are mainly of historical interest. The method is so ingenious, however, that a detailed study is worthwhile. 

The basic idea of the lunar distance method is easy to comprehend. Since the moon moves across the celestial sphere
at a rate of about 0.5° per hour, the angular distance between the moon, M, and a body in her path, B, varies at a
similar rate and rapidly enough to be used to measure the time. The time corresponding with an observed lunar
distance can be found by comparison with tabulated values.

Tabulated lunar distances are calculated from the geocentric equatorial coordinates of M and B using the cosine law:

or

D is the geocentric lunar distance. These formulas can be used to set up one�s own table with the aid of the
Nautical Almanac or any computer almanac if a lunar distance table is not available.

*Almost a century after the original Lunar Distance Tables were dropped, Steven Wepster resumed the tradition.
  His tables are presently (2004) available through the internet [14].

Clearing the lunar distance

Before a lunar distance measured by the observer can be compared with tabulated values, it has to be reduced to the
corresponding geocentric angle by clearing it from the effects of refraction and parallax. This essential process is
called clearing the lunar distance. Numerous procedures have been developed, among them rigorous and �quick�
methods. In the following, we will discuss the almost identical methods by Dunthorne (1766) and Young (1856). They
are rigorous for a spherical model of the earth.
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Fig. 7-1 shows the positions of the moon, M, and a reference body, B, in the coordinate system of the horizon. We
denote the apparent positions of the centers of the moon and the reference body by Mapp and Bapp, respectively. Z is the

zenith.

The side Dapp of the spherical triangle Bapp-Z-Mapp is the apparent lunar distance. The altitudes of Mapp and Bapp

(obtained after applying the corrections for index error, dip, and semidiameter) are HMapp and HBapp, respectively. The

vertical circles of both bodies form the angle �, the difference between the azimuth of the moon, AzM, and the azimuth

of the reference body, AzB:

The position of each body is shifted along its vertical circle by atmospheric refraction and parallax in altitude. After
correcting HMapp and HBapp for both effects, we obtain the geocentric positions M and B. We denote the altitude of M
by HM and the altitude of B by HB. HM is always greater than HMapp because the parallax of the moon is always greater
than refraction. The angle � is neither affected by refraction nor by the parallax in altitude:

The side D of the spherical triangle B-Z-M is the unknown geocentric lunar distance. If we knew the exact value for
�, calculation of D would be very simple (cosine law). Unfortunately, the navigator has no means for measuring �

precisely. It is possible, however, to calculate D solely from the five quantities Dapp, HMapp, HM, HBapp, and HB.

Applying the cosine formula to the spherical triangle formed by the zenith and the apparent positions, we get:

Repeating the procedure with the spherical triangle formed by the zenith and the geocentric positions, we get:

cos� =
cosD � sin H M�sin HB

cosH M�cosH B
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Since � is constant, we can combine both azimuth formulas:

Thus, we have eliminated the unknown angle �. Now, we subtract unity from both sides of the equation:

Using the addition formula for cosines, we have:

Solving for cos D, we obtain Dunthorne�s formula for clearing the lunar distance:

Adding unity to both sides of the equation instead of subtracting it, leads to Young�s formula:

Procedure

Deriving UT from a lunar distance comprises the following steps:

1.
We measure the altitude of the upper or lower limb of the moon, whichever is visible, and note the time of the
observation indicated by our watch, WT1LMapp.

We apply the corrections for index error and dip (if necessary) and get the apparent altitude of the limb, H1LMapp. We

repeat the procedure with the reference body and obtain the watch time WT1Bapp  and the altitude H1Bapp.

2.
We measure the angular distance between the limb of the moon and the reference body, DLapp, and note the

corresponding watch time, WTD. The angle DLapp has to be measured with the greatest possible precision. It is

recommended to measure a few DLapp values and their corresponding WTD values in rapid succession and calculate the

respective average value. When the moon is almost full, it is not quite easy to distinguish the limb of the moon from
the terminator (shadow line). In general, the limb has a sharp appearance whereas the terminator is slightly indistinct.
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cosHMapp�cosHBapp

�
cosH Mapp�cosH Bapp

cosH Mapp�cosH Bapp

cosD � sinH M�sin H B � cosH M�cosH B

cosH M�cosHB

=
cosDapp � sin H Mapp� sinH Bapp � cosHMapp�cosHBapp

cosHMapp�cosHBapp

cosD � cos�H M � H B�

cosHM�cosHB

=
cosDapp � cos �HMapp � H Bapp�

cosHMapp�cosHBapp

cosD =
cosHM�cosHB

cosH Mapp�cosH Bapp

�[cosD app � cos �HMapp � HBapp� ] � cos �HM � HB�

cosD =
cosH M�cosHB

cosHMapp�cosHBapp

� [cosDapp � cos�HMapp � HBapp� ] � cos�H M � H B�



3.
We measure the altitudes of both bodies again, as described above. We denote them by H2LMapp and H2Bapp, and note

the corresponding watch times of observation, WT2LMapp and WT2Bapp.

4.
Since the observations are only a few minutes apart, we can calculate the altitude of the respective body at the moment
of the lunar distance observation by linear interpolation:

5.
We correct the altitude of the moon and the angular distance DLapp for the augmented semidiameter of the moon,

SDaug. The latter can be calculated directly from the altitude of the upper or lower limb of the moon:

The altitude correction is:

The rules for the lunar distance correction are:

The above procedure is an approximation since the augmented semidiameter is a function of the altitude corrected for
refraction. Since refraction is a small quantity and since the total augmentation between 0° and 90° altitude is only
approx. 0.3�, the resulting error is very small and  may be ignored.

The sun, when chosen as reference body, requires the same corrections for semidiameter. Since the sun does not show
a measurable augmentation, we can use the geocentric semidiameter tabulated in the Nautical Almanac or calculated
with a computer program.

6.
We correct both altitudes, HMapp and HBapp, for atmospheric refraction, R.

Ri is subtracted from the respective altitude. The refraction formula is only accurate for altitudes above approx. 10°. 

Lower altitudes should be avoided anyway since refraction may become erratic and since the apparent disk of the
moon (and sun) assumes an oval shape caused by an increasing difference in refraction for upper and lower limb. This
distortion would affect the semidiameter with respect to the reference body in a complicated way.
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HLMapp = H1LMapp � �H2LMapp � H1LMapp��
WT D � WT1LMapp

WT2LMapp �WT1LMapp

HBapp = H1Bapp � �H2Bapp � H1Bapp��
WTD �WT1Bapp

WT2Bapp �WT1Bapp

tan SDaug =
k

[� 1

sin
2
HPM

� �cosHLMapp ± k �2 ]� sinH LMapp

k = 0.2725

upper limb: cosH LMapp � k lower limb: cosHLMapp � k

Lower limb: H Mapp = H LMapp � SDaug

Upper limb: HMapp = H LMapp � SDaug

Limb of moon towards reference body: Dapp = DLapp � SDaug

Limb of moon away from reference body: Dapp = DLapp � SDaug

Ri[ ' ] =
p[mbar ]

1010
�

283

T [°C ]� 273
�� 0.97127

tanH i

�
0.00137

tan
3
H i

� i = Mapp ,Bapp H i � 10 °



7.
We correct the altitudes for the parallax in altitude:

We apply the altitude corrections as follows:

The correction for parallax is not applied to the altitude of a fixed star (HPB = 0).

8.
With Dapp, HMapp, HM, HBapp, and HB, we calculate D using Dunthorne�s or Young�s formula.

9.
The time corresponding with the geocentric distance D is found by interpolation. Lunar distance tables show D as a
function of time, T (UT). If the rate of change of D does not vary too much (less than approx. 0.3� in 3 hours), we can
use linear interpolation. However, in order to find T, we have to consider T as a function of D (inverse interpolation).

TD is the unknown time corresponding with D. D1 and D2 are tabulated lunar distances. T1 and T2 are the

corresponding time (UT) values (T2 = T1 + 3h). D is the geocentric lunar distance calculated from Dapp. D has to be

between D1 and D2.

If the rate of change of D varies significantly, more accurate results are obtained with methods for non-linear
interpolation, for example, with 3-point Lagrange interpolation. Choosing three pairs of tabulated values, (T1, D1),

(T2, D2), and (T3, D3), TD is calculated as follows:

D may have any value between D1 and D3.

There must not be a minimum or maximum of D in the time interval [T1, T3]. This problem does not occur with a

properly chosen body having a suitable rate of change of D. Near a minimum or maximum of D, �D/�T would be very
small, and the observation would be erratic anyway. 
After finding TD, we can calculate the watch error, �T.

�T is the difference between our watch time at the moment of observation, WTD, and the time found by interpolation,

TD.

Subtracting the watch error from the watch time, WT, results in UT.
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sinPM = sin HPM�cos �H Mapp� RMapp � sin PB = sin HPB�cos �HBapp � RBapp�

HM = H Mapp � RMapp � PM HB = HBapp � RBapp � PB

T D = T1 � �T2 � T 1��
D � D1

D2 � D1

TD = T1�
�D � D2���D � D3�

�D1 � D2���D1 � D3�
� T 2�

�D � D1���D� D3�

�D2 � D1���D2 � D3�
� T 3�

�D � D1���D � D2�

�D3 � D1���D3 � D2�

T 2 = T 1 � 3h T 3 = T 2 � 3h D1 	 D2 	 D3 or D1 � D2 � D3


 T = WTD � T D

UT = WT � 
T



Improvements

The procedures described so far refer to a spherical earth. In reality, however, the earth has approximately the shape of
an ellipsoid flattened at the poles. This leads to small but measurable effects when observing the moon, the body
nearest to the earth. First, the parallax in altitude differs slightly from the value calculated for a spherical earth.
Second, there is a small parallax in azimuth which would not exist if the earth were a sphere (see chapter 9). If no
correction is applied, D may contain an error of up to approx. 0.2�. The following formulas refer to an observer on the
surface of the reference ellipsoid (approximately at sea level).

The corrections require knowledge of the observer�s latitude, Lat, the true azimuth of the moon, AzM, and the true

azimuth of the reference body, AzB.

Since the corrections are small, the three values do not need to be very accurate. Errors of a few degrees are tolerable.
Instead of the azimuth, the compass bearing of each body, corrected for magnetic declination, may be used.

Parallax in altitude:

This correction is applied to the parallax in altitude and is used to calculate HM with higher precision before clearing

the lunar distance.

f is the flattening of the earth: f =
1

298.257
  

Parallax in azimuth:

The correction for the parallax in azimuth is applied after calculating HM and D. The following formula is a fairly

accurate approximation of the parallax in azimuth, �AzM:

In order to find how �AzM affects D, we go back to the cosine formula:

We differentiate the equation with respect to �:
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 PM � f �HPM� [sin�2� Lat ��cos AzM�sinH Mapp � sin
2
Lat�cosH Mapp ]

PM , improved = PM � 
 PM

HM = Hmapp � RMapp � PM , improved


 AzM � f �HPM�
sin �2�Lat �� sin AzM

cosH M

cosD = sin H M�sin HB � cosH M�cosH B�cos�

d �cosD�

d�
= � cosH M�cosHB�sin �

d �cosD � = � sin D�d D

� sinD�d D = � cosHM�cosHB� sin ��d �

d D =
cosH M�cosH B�sin �

sin D
�d �



Since d� = d AzM , the change in D caused by an infinitesimal change in AzM is:

With a small but measurable change in AzM, we have:

Combining the formulas for �AzM and �D, we get:

In most cases, Dimproved will be accurate to 0.1'' (provided the measurements are error-free). The correction formula is

less accurate when the topocentric (~ apparent) positions of moon and reference body are close (< 5°) together. The
formula should not be applied when the reference body is less than about four semidiameters (~1°) away from the
center of the moon.

Accuracy

According to modern requirements, the lunar distance method is rather inaccurate. In the 18th and early 19th century,
however, this was generally accepted because a longitude with an error of 0.5°-1° was still better than no longitude
measurement at all. Said error is the approximate result of an error of only 1� in the measurement of DLapp, not

uncommon for a sextant reading under practical conditions. Therefore, DLapp should be measured with greatest care.

The altitudes of both bodies do not quite require the same degree of precision because a small error in the apparent
altitude leads to about the same error in the geocentric altitude. Since both errors cancel each other to a large extent,
the resulting error in D is comparatively small. An altitude error of a few arcminutes is tolerable in most cases.
Therefore, measuring two altitudes of each body and finding the altitude at the moment of the lunar distance
observation by interpolation is not absolutely necessary. Measuring a single altitude of each body shortly before or
after the lunar distance measurement is sufficient if a small loss in accuracy is accepted.

The position of the reference body with respect to the moon is crucial. The rate of change of D should not be too low.
It becomes zero when D passes through a minimum or maximum, making an observation useless. This can be
checked with lunar distance tables. Since the plane of the lunar orbit forms a relatively small angle (approx. 5°) with
the ecliptic, bright bodies in the vicinity of the ecliptic are most suitable (sun, planets, selected stars).

The stars generally recommended for the lunar distance method are Aldebaran, Altair, Antares, Fomalhaut, Hamal,
Markab, Pollux, Regulus, and Spica, but other stars close to the ecliptic may be used as well, e. g., Nunki. The lunar
distance tables of the Nautical Almanac contained only D values for those bodies having a favorable position with
respect to the moon on the day of observation.

7-7

d D =
cosH M�cosHB�sin�

sinD
�d AzM


 D �
cosH M�cos HB� sin�

sin D
�
 Az M

Dimproved � D� 
D

Dimproved � D � f �HPM�
cosH B�sin �2�Lat ��sin AzM�sin �AzM � AzB�

sin D



Chapter 8

Rise, Set, Twilight

General Conditions for Visibility

For the planning of observations, it is useful to know the times during which a certain body is above the horizon as
well as the times of sunrise, sunset, and twilight.

A body can be always above the horizon, always below the horizon, or above the horizon during a part of the day,
depending on the observer's latitude and the declination of the body.

A body is circumpolar (always above the celestial horizon) when the zenith distance is smaller than 90° at the
moment of lower meridian passage, i. e., when the body is on the lower branch of the local meridian (Fig 8-1a). This
is the case if

A body is continually below the celestial horizon when the zenith distance is greater than 90° at the instant of upper
meridian passage (Fig 8-1b). This is the case if

A celestial body being on the same hemisphere as the observer is either sometimes above the horizon or circumpolar.
A body being on the opposite hemisphere is either sometimes above the horizon or permanently invisible, but never
circumpolar.

The sun provides a good example of how the visibility of a body is affected by latitude and declination. At the time of
the summer solstice (Dec = +23.5°), the sun is circumpolar to an observer being north of the arctic circle (Lat >
+66.5°). At the same time, the sun remains below the celestial horizon all day if the observer is south of the antarctic

circle (Lat < −66.5°). At the times of the equinoxes (Dec = 0°), the sun is circumpolar only at the poles. At the time of

the winter solstice (Dec = -23.5°), the sun is circumpolar south of the antarctic circle and invisible north of the arctic
circle. If the observer is between the arctic and the antarctic circle, the sun is visible during a part of the day all year
round.

Rise and Set

The events of rise and set can be used to determine latitude, longitude, or time. One should not expect very accurate
results, however, since atmospheric refraction may be erratic if the body is on or near the horizon.
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�Lat � Dec� � 90°

�Lat � Dec� � 90°



The geometric rise or set of a body occurs when the center of the body passes through the celestial horizon (H = 0°).
Due to the influence of atmospheric refraction, all bodies except the moon appear above the visible and sensible
horizon at this instant. The moon is not visible at the moment of her geometric rise or set since the depressing effect of

the horizontal parallax (∼1°)  is greater than the elevating effect of atmospheric refraction.

The approximate apparent altitudes (referring to the sensible horizon) at the moment of the astronomical rise or set
are:

Sun (lower limb): 15'

Stars: 29'

Planets: 29' − HP

When measuring these altitudes with reference to the sea horizon, we have to add the dip of horizon (chapter 2) to the
above values. For example, the altitude of the lower limb of the rising or setting sun is approx. 20' if the height of eye
is 8m.

We begin with the well-known altitude formula (chapter 4).

Solving the equation for the meridian angle, t, we get :

The equation has no solution if the argument of the inverse cosine is smaller than −1 or greater than 1. In the first

case, the body is circumpolar, in the latter case, the body remains continuously below the horizon. Otherwise, the
arccos function returns values in the range from 0° through 180°.

Due to the ambiguity of the arccos function, the equation has two solutions, one for rise and one for set. For the
calculations below, we have to observe the following rules:

If the body is rising (body eastward from the observer), t is treated as a negative quantity.

If the body is setting (body westward from the observer), t is treated as a positive quantity.

If we know our latitude and the time of rise or set, we can calculate our longitude:

GHA is the Greenwich hour angle of the body at the moment of rise or set. The sign of t has to be observed carefully

(see above). If  the resulting longitude is smaller than −180°, we add 360°.

Knowing our position, we can calculate the times of sunrise and sunset:

The times of sunrise and sunset obtained with the above formula are not quite accurate since Dec and EoT are
variable. Since we do not know the exact time of rise or set at the beginning, we have to use estimated values for Dec
and EoT initially. The time of rise or set can be improved by iteration (repeating the calculations with Dec and EoT at
the calculated time of rise or set). Further, the times thus calculated are influenced by the irregularities of atmospheric
refraction near the horizon. Therefore, a time error of  ±2 minutes is not unusual.

Accordingly, we can calculate our longitude from the time of sunrise or sunset if we know our latitude:
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cos t = �
sin Lat�sinDec

cos Lat�cosDec

t = arccos �� tan Lat� tan Dec �

Lon = �GHA ± t

UT Sunrise , Sunset = 12 � EoT �
Lon [° ]

15
±

t [° ]

15

Lon[° ] = 15��12 � GMT Sunrise , Sunset � EoT � ± t [° ]

sinH = sin Lat�sinDec � cos Lat �cosDec�cos t = 0



Again, this is not a very precise method, and an error of several arcminutes in longitude is not unlikely.
Knowing our longitude, we are able to determine our approximate latitude from the time of sunrise or sunset:

In navigation, rise and set are defined as the moments when the upper limb of a body is on the visible horizon.
These events can be observed without a sextant. Now, we have to take into account the effects of refraction, horizontal
parallax, dip, and semidiameter. These quantities determine the altitude (Ho) of a body with respect to the celestial
horizon at the instant of the visible rise or set.

By definition, the standard refraction for a body being on the sensible horizon, RH, is 34' (in reality it is subject to

random variations).

When observing the upper limb of the sun, we get:

Ho is negative. If we refer to the upper limb of the sun and the sensible horizon (Dip=0), the meridian angle at the
time of sunrise or sunset is:

Azimuth and Amplitude

The azimuth angle of a rising or setting body is calculated with the azimuth formula (see chapter 4):

With H=0, we get:

Az is +90° (rise) and −90° (set) if the declination of the body is zero, regardless of the observer's latitude. Accordingly,

the sun rises in the east and sets in the west at the times of the equinoxes (geometric rise and set).

With Hcenter= −50' (upper limb of the sun on the sensible horizon), we have:

The true azimuth of the rising or setting body is:

The azimuth of a body at the moment of rise or set can be used to find the magnetic declination at the observer's
position (compare with  chapter 13).

8-3

t [° ] = Lon[° ]� 15��12 �GMT Sunrise , Sunset � EoT �

Lat = arctan �� cos t

tan Dec �

t = arccos
sinHo � sin Lat� sinDec

cos Lat�cosDec

Ho = HP � SD � RH � Dip

Ho = 0.15 ' � 16 ' � 34 ' � Dip � �50 ' � Dip

t = arccos
�0.0145� sinLat�sin Dec

cos Lat�cosDec

Az = arccos
sin Dec � sinH �sin Lat

cosH�cos Lat

Az = arccos
sin Dec

cos Lat

Az = arccos
sin Dec � 0.0145� sinLat

0.9999�cos Lat

Az N = {Az if t 	 0

360 °� Az if t � 0 }



The horizontal angular distance of a rising or setting body from the east (rising) or west (setting) point on the horizon
is called amplitude and can be calculated from the azimuth. An amplitude of E45°N, for instance, means that the
body rises 45° north of the east point on the horizon.

Twilight

At sea, twilight is important for the observation of stars and planets since it is the only time when these bodies and the
horizon are visible. By definition, there are three kinds of twilight. The altitude, H, refers to the center of the sun and
the celestial horizon and marks the beginning (morning) and the end (evening) of the respective twilight.

Civil twilight: H =  −6°

Nautical twilight: H =  −12°

Astronomical twilight: H =  −18° 

In general, an altitude of the sun between −3° and −9° is recommended for astronomical observations at sea (best

visibility of brighter stars and sea horizon). However, exceptions to this rule are possible, depending on the actual
weather conditions and the brightness of the observed body.

The meridian angle for the sun at −6° altitude (center)  is:

Using this formula, we can find the approximate time for our observations (in analogy to sunrise and sunset).
As mentioned above, the simultaneous observation of stars and the horizon is possible during a limited time interval
only. 

To calculate the length of this interval, 
T, we use the altitude formula and differentiate sin H with respect to the
meridian angle, t:

Substituting cosH.dH for d(sinH) and solving for dt, we get the change in the meridian angle, dt, as a function of a
change in altitude, dH:

With H = −6° and dH � 
H =  6° (H = −3°...−9°), we get:

Converting the change in the meridian angle to a time span (measured in minutes) and ignoring the sign, the equation
is stated as:
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t = arccos
�0.10453� sinLat�sin Dec

cos Lat�cosDec

d �sin H �

dt
= � cos Lat�cosDec�sin t

d �sinH � = � cos Lat�cosDec� sin t�dt

dt = �
cosH

cos Lat�cosDec�sin t
�dH


 t [° ] � �
5.97

cos Lat�cosDec �sin t


 T [m] �
24

cos Lat�cosDec� sin t



The shortest possible time interval for our observations (Lat = 0, Dec = 0, t = 96°) lasts approx. 24 minutes. As the
observer moves northward or southward from the equator, cos Lat and sin t decrease (t>90°). Accordingly, the
duration of twilight increases. When t is 0° or 180°, 
T is infinite.

This is confirmed by the well-known fact that the duration of twilight is shortest in equatorial regions and longest in
polar regions.

We would obtain the same result when calculating t for H = −3° and H = −9°, respectively:

The Nautical Almanac provides tabulated values for the times of sunrise, sunset, civil twilight and nautical twilight for

latitudes between −60° and +72° (referring to an observer being at the Greenwich meridian). In addition, times of

moonrise and moonset are given.
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 T [m] = 4�� t�9 °
[° ] � t�3 °

[° ] �



Chapter 9

Geodetic Aspects of Celestial Navigation

The Ellipsoid

Celestial navigation is based upon the assumption that the earth is a sphere. Accordingly, calculations are based on the
laws of spherical trigonometry. In reality, the shape of the earth rather resembles an oblate spheroid (ellipsoid)
resulting from two forces, gravitation and centrifugal force, acting on the viscous body of the earth. While
gravitation alone would force the earth to assume the shape of a sphere, the state of lowest potential energy, the
centrifugal force caused by the earth's rotation contracts the earth along the axis of rotation (polar axis) and stretches it
along the plane of the equator. The local vector sum of both forces is called gravity.

There are several reference ellipsoids in use to describe the shape of the earth, for example the World Geodetic
System ellipsoid of 1984 (WGS 84). An important characteristic of the WGS 84 ellipsoid is that its center conincides
with the mass center of the earth. There are special reference ellipsoids whose centers are not identical with the mass
center. Off-center ellipsoids are constructed to obtain a better fit for a particular region. The following considerations
refer to the WGS 84 ellipsoid which gives the best universal fit and is accurate enough for the purpose of navigation in
most cases. Fig.9-1 shows a meridional section of the ellipsoid.

Earth data (WGS 84 ellipsoid) :

Equatorial radius re 6378137.0 m 

Polar radius rp 6356752.3142 m 

Flattening f = (re- rp) / re 1/298.25722 

 

Due to the flattening of the earth, we have to distinguish between geodetic and geocentric latitude of a given position.
The geodetic latitude, Lat, is the angle between the local normal (perpendicular) to the surface of the reference
ellipsoid and the line of intersection formed by the plane of the equator and the plane of the local meridian. The
geocentric latitude, Lat', is the angle formed by the local radius vector and said line of intersection. Geodetic and
geocentric latitude are interrelated as follows:

If the earth were a sphere (f = 0), geodetic and geocentric latitude would be the same. With the spheroid, both
quantities are equal only at the poles and on the equator. At all other places, the absolute value of the geocentric
latitude is smaller than the absolute value of the geodetic latitude. Due to the rotational symmetry of the ellipsoid
with respect to the polar axis, geodetic and geocentric longitude are equal, provided the same reference
meridian is used*. Maps are usually based upon geodetic coordinates which are also referred to as geographic
coordinates [1]**. In this context it should be mentioned that the term �geographic position�, applied to a celestial
body, is misleading, since Greenwich hour angle and declination are geocentric coordinates (see chapter 3).

*  Actually, the WGS84 (GPS) reference meridian is located approx. 5 arcseconds east of the 1884 Greenwich meridian.
**In other publications, e. g.,  [10], astronomical coordinates (see below) and geographic coordinates are considered as identical.
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tan Lat ' = �1� f �2� tan Lat



In the following, we will discuss the effects of the oblateness (flattening) of the earth on celestial navigation.

Any zenith distance (and corresponding altitude) measured by the navigator refers to the local direction of gravity
(plumb line) which points to the astronomical nadir and thus defines the astronomical zenith which is exactly
opposite to the nadir. Even the visible sea horizon is defined by the astronomical zenith since the plane tangent to the
water surface at the observer's position is perpendicular to the local direction of gravity.

Under the assumption that the mass distribution inside the ellipsoid is in a hydrostatic equilibrium, the plumb line
coincides with the local normal to the ellipsoid which passes through the geodetic zenith. Thus, astronomical and
geodetic zenith are identical. Accordingly the astronomical coordinates of a terrestrial position (obtained by
astronomical observations) are equal to the geodetic (geographic) coordinates in this hypothetical case. As
demonstrated in Fig. 9-1 for example, the altitude of the celestial north pole, PN, with respect to the geoidal horizon

equals the geodetic, not the geocentric latitude. A noon latitude, calculated from the (geocentric) declination and the
zenith distance with respect to the astronomical zenith would lead to the same result.

The geocentric zenith is defined as the point where a straight line originating from the center of the earth and passing
through the observer's position intersects the celestial sphere. The angle between this line and the local normal to the
reference ellipsoid is called angle of the vertical, v. The angle of the vertical lies on the plane of the local meridian
and is a function of the geodetic latitude. The following formula was proposed by Smart [9]:

The coefficients of the above formula refer to the proportions of the WGS 84 ellipsoid.

The angle of the vertical at a given position equals the difference between geodetic and geocentric latitude (Fig. 9-1):

The maximum value of v, occurring at 45° geodetic latitude, is approx. 11.5'. Thus, the geocentric latitude of an
observer being at 45°geodetic latitude is only 44° 48.5'.

The navigator, of course, wants to know if the oblateness of the earth causes significant errors due to the fact that
calculations of celestial navigation are based on the laws of spherical trigonometry. According to the above values for
polar radius and equatorial radius of the WGS 84 ellipsoid, the great circle distance of one arcminute is 1849 m at the
poles and 1855 m at the equator. This small difference does not produce a significant error when plotting lines of
position. It is therefore sufficient to use the adopted mean value (1 nautical mile = 1.852 km). However, when
calculating the great circle distance (chapter 11) of two locations thousands of nautical miles apart, the error caused by
the oblateness of the earth can increase to several nautical miles. If high precision is required, the formulas for
geodetic distance should be used [2]. The shortest path between two points on the surface of an ellipsoid is called
geodesic line. It is the equivalent to the arc of a great circle on the surface of a sphere.

The Geoid

In reality, the earth is not in a state of hydrostatic equilibrium and is therefore not exactly an oblate ellipsoid. The
shape of the earth is more accurately described by the geoid, an equipotential surface of gravity.
 
The geoid has local anomalies in the form of elevations and depressions caused by geographic features and a non-
uniform mass distribution. Elevations occur at local accumulations of matter (mountains, ore deposits), depressions at
local deficiencies of matter (large water bodies, valleys, caverns). The elevation or depression of each point of the
geoid with respect to the reference ellipsoid is found by gravity measurement.

On the slope of an elevation or depression of the geoid, the direction of gravity (the normal to the geoid) does not
coincide with the normal to the reference ellipsoid, i. e., the astronomical zenith differs from the geodetic zenith in
such places. The small angle between the local direction of gravity and the local normal to the reference ellipsoid, i.
e., the angular distance between astronomical and geodetic zenith, is called deflection of the vertical. The latter is
composed of a meridional (north-south) component and a zonal (west-east) component.

The deflection of the vertical is usually negligible at sea. In the vicinity of mountain ranges, however, significant
deflections of the vertical (up to approx. 1 arcminute) have been reported (chapter 2). Thus, an astronomical position
may be measurably different from the geodetic (geographic) position. This is important to surveying and map-making.
Therefore, local corrections for the meridional and zonal component may have to be applied to an astronomical
position, depending on the required precision.
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v [ ' ' ] � 692.666�sin �2�Lat � � 1.163�sin �4�Lat � � 0.026�sin �6�Lat �

v = Lat � Lat '



The Parallax of the Moon

Due to the oblateness of the earth, the distance between geoidal and celestial horizon is not constant but can assume
any value between rp and re, depending on the observer's latitude. This has a measurable effect on the parallax in

altitude of the moon since tabulated values for HP refer to the equatorial radius, re. The apparent position of the moon

is further affected by the fact that usually the local direction of gravity does not pass through the center of the ellipsoid.
This displacement of the plumb line from the earth's center causes a small (usually negligible) parallax in azimuth
unless the moon is on the local meridian. In the following, we will calculate the effects of the oblateness of the earth
on the parallax of the moon with the exact formulas of spherical astronomy [9]. The effect of the oblateness of the
earth on the apparent position of other bodies is negligible.

Fig. 9-2 shows a projection of the astronomical zenith, Za, the geocentric zenith, Zc, and the geographic position of the

moon, M, on the celestial sphere, an imaginary hollow sphere of infinite diameter with the earth at its center.

The geocentric zenith, Zc, is the point where a straight line from the earth's center through the observer's position

intersects the celestial sphere. The astronomical zenith, Za, is the point at which the plumb line going through the

observer's position intersects the celestial sphere. Za and Zc are on the same celestial meridian. M is the projected

geocentric position of the moon defined by Greenwich hour angle and declination.

M' is the point where a straight line from the observer through the moon's center intersects the celestial sphere. Zc, M,

and M' are on a great circle. The zenith distance measured by the observer is za' because the astronomical zenith is the

only reference available. The quantity we want to know is za, the astronomical zenith distance corrected for parallax in

altitude. This is the angular distance of the moon from the astronomical zenith, measured by a fictitious observer at
the earth's center.

The known quantities are v, Aa', and za'. In contrast to the astronomer, the navigator is usually not able to measure Aa'

precisely. For navigational purposes, the calculated azimuth (see chapter 4) may be substituted for Aa'.

We have three spherical triangles, ZaZcM', ZaZcM, and ZaMM'. First, we calculate zc' from za', v, and Aa' using the

law of cosines for sides (see chapter 10):
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To obtain zc, we first have to calculate the relative (re = 1) local radius, �, and the geocentric parallax, pc:

HP is the equatorial horizontal parallax. The geocentric zenith distance corrected for parallax is:

Using the cosine formula again, we calculate Ac, the azimuth angle of the moon with respect to the geocentric zenith:

The astronomical zenith distance corrected for parallax is:

Thus, the parallax in altitude (astronomical) is:

The small angle between M and M', measured at Za, is the parallax in azimuth, paz:

The parallax in azimuth does not exist when the moon is on the local meridian. It is further non-existant when the
observer is at one of the poles or on the equator (v = 0) but greatest when the observer is at medium latitudes. As a
consequence of the parallax in azimuth, the horizontal direction of the moon observed from the surface of the ellipsoid
is always a little closer to the elevated pole (the celestial pole above the horizon) than the horizontal direction observed
from the center of the ellipsoid. The parallax in azimuth does not exceed �±f HP when the moon is on the horizon but
increases with increasing altitude. In most cases, particularly at sea, the navigator will not notice the influence of the
flattening of the earth. Traditionally, the apparent altitude of a body is reduced to the geocentric altitude through the
established altitude correction procedure (including the correction for parallax in altitude). The intercept method
(chapter 4) compares the observed altitude thus obtained with the geocentric altitude calculated from the assumed
geodetic (geographic) coordinates of the observer and the geocentric equatorial coordinates (chapter 3) of the observed
body. The difference between observed and calculated altitude is the intercept. The calculated azimuth is geocentric. A
correction for the parallax in azimuth (see above) is usually omitted since such a degree of precision can not be
reproduced when plotting position lines on a nautical chart. On land, however, more accurate altitude measurement is
possible, and the navigator or surveyor may wish to use refined methods for the calculation of his position when
observing the moon.

Medium-precision method

During the course of altitude corrections, we calculate the parallax in altitude, P, with the formulas for spherical
bodies (chapter 2). After doing this, we calculate the approximate correction for the flattening of the earth, �P:
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Adding �P to P, we get the improved parallax in altitude which we use for our further calculations instead of P:

As a result, we obtain a more accurate intercept (chapter 4). The above correction formula is accurate to a fraction of a
second of arc.

The approximate parallax in azimuth is obtained through a simple formula: 

The topocentric true azimuth is

The formula for the parallax in azimuth is also accurate to a fraction of an arcsecond. It becomes less accurate as the
altitude approaches 90°. Observing bodies with such altitudes, however, is difficult and usually avoided.

Rigorous method*

For even more accurate results, we use the topocentric equatorial coordinates of the observed body for sight
reduction. Instead of the center of the earth, the observer�s position is the origin of this coordinate system. The plane
of the topocentric equator is parallel to the geocentric equator. The plane of the local meridian remains the same. The
values for altitude and true azimuth calculated from the topocentric coordinates of the observed body are topocentric as
well. There is neither a parallax in altitude nor a parallax in azimuth, so we have to skip the parallax correction and
have to correct for the topocentric (augmented) semidiameter of the body when performing the altitude corrections.

The topocentric equatorial coordinates of a celestial body are obtained from the geocentric ones through coordinate
transformation. The given quantities are:

Geographic latitude of the observer Lat
Geocentric meridian angle t
Geocentric declination Dec
Equatorial horizontal parallax HP
Polar radius of the earth rp

Equatorial radius of the earth re

To be calculated:

Topocentric meridian angle t'
Topocentric declination Dec'

First, we calculate a number of auxiliary quantities:

Eccentricity of the ellipsoid, distance between center and focal point of a meridional section (re = 1):

Local radius ( re = 1):

*The formulas are rigorous for an observer on the surface of a reference ellipsoid the center of which coincides with the mass center of the earth.
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Geocentric latitude of the observer:

The topocentric coordinates of the body, t' and Dec',  are calculated as follows. t is the parallax in hour angle:�
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Chapter 10

Spherical Trigonometry

The earth is usually regarded as a sphere in celestial navigation although an oblate spheroid would be a better
approximation. Otherwise, navigational calculations would become too difficult for practical use. The position error
introduced by the spherical earth model is usually very small and stays within the "statistical noise" caused by other
omnipresent errors like, e.g., abnormal refraction, rounding errors, etc. Although it is possible to perform navigational
calculations solely with the aid of tables (H.O. 229, H.O. 211, etc.) and with little mathematics, the principles of
celestial navigation can not be comprehended without knowing the elements of spherical trigonometry.

The Oblique Spherical Triangle

Like any triangle, a spherical triangle is characterized by three sides and three angles. However, a spherical triangle is
part of the surface of a sphere, and the sides are not straight lines but arcs of great circles (Fig. 10-1).

A great circle is a circle on the surface of a sphere whose plane passes through the center of the sphere (see chapter
3). 

Any side of a spherical triangle can be regarded as an angle - the angular distance between the adjacent vertices,
measured at the center of the sphere. The interrelations between angles and sides of a spherical triangle are described
by the law of sines, the law of cosines for sides, the law of cosines for angles, the law of sines and cosines, the law
of cotangents, Napier's analogies, and Gauss' formulas (apart from other formulas).

Law of sines:

Law of cosines for sides:

Law of cosines for angles:
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Law of sines and cosines:

Law of cotangents:

Napier's analogies:

Gauss' formulas:

These formulas and others derived thereof enable any quantity (angle or side) of a spherical triangle to be calculated if
three other quantities are known. 

Particularly the law of cosines for sides is of interest to the navigator.

10-2

tan
A
1
� A

2

2
� tan

A
3

2
=

cos
s
1
� s

2

2

cos
s
1
� s

2

2

tan
A

1
� A

2

2
� tan

A
3

2
=

sin
s
1
� s

2

2

sin
s
1
� s

2

2

tan
s
1
� s

2

2

tan
s
3

2

=

cos
A
1
� A

2

2

cos
A
1
� A

2

2

tan
s
1
� s

2

2

tan
s
3

2

=

sin
A

1
� A

2

2

sin
A

1
� A

2

2

sin
A

1
� A

2

2

cos
A

3

2

=

cos
s
1
� s

2

2

cos
s
3

2

cos
A

1
� A

2

2

sin
A

3

2

=

cos
s
1
� s

2

2

cos
s
3

2

sin
A

1
� A

2

2

cos
A

3

2

=

sin
s
1
� s

2

2

sin
s
3

2

cos
A

1
� A

2

2

sin
A

3

2

=

sin
s
1
� s

2

2

sin
s
3

2

sin s1�cos A2 = cos s2 �sin s3 � sin s2�cos s3�cos A1

sin A1�cot A2 = cot s2�sin s3 � cos s3�cos A1

sin s2�cos A3 = cos s3� sin s1 � sin s3�cos s1�cos A2

sin s3�cos A1 = cos s1�sin s2 � sin s1�cos s2�cos A3

sin s1�cos A3 = cos s3�sin s2 � sin s3�cos s2 �cos A1

sin s2�cos A1 = cos s1� sin s3 � sin s1�cos s3�cos A2

sin A1�cot A3 = cot s3�sin s2 � cos s2�cos A1

sin A2�cot A3 = cot s3�sin s1 � cos s1�cos A2

sin A2�cot A1 = cot s1�sin s3 � cos s3�cos A2

sin A3�cot A1 = cot s1�sin s2 � cos s2�cos A3

sin s3�cos A2 = cos s2�sin s1 � sin s2�cos s1�cos A3

sin A3�cot A2 = cot s2�sin s1 � cos s1�cos A3



The Right Spherical Triangle

Solving a spherical triangle is less complicated when it contains a right angle (Fig. 10-2). Using Napier's rules of
circular parts, any quantity can be calculated if only two other quantities (apart from the right angle) are known.

We arrange the sides forming the right angle (s1, s2) and the complements of the remaining angles (A1, A2) and

opposite side (s3) in the form of a circular diagram consisting of five sectors, called "parts" (in the same order as they

appear in the triangle). The right angle itself is omitted (Fig. 10-3):

According to Napier's rules, the sine of any part of the diagram equals the product of the tangents of the adjacent parts
and the product of the cosines of the opposite parts:

In a simpler form, these equations are stated as:

There are several applications for the right spherical triangle in navigation, for example Ageton's sight reduction
tables (chapter 11) and great circle navigation (chapter 13). 
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Chapter 11

The Navigational Triangle

The navigational (nautical) triangle is the (usually) oblique spherical triangle formed by the north pole, PN, the

observer's assumed position, AP, and the geographic position of the celestial object, GP (Fig. 11-1). All common sight
reduction procedures are based upon the navigational triangle.

When using the intercept method, the latitude of the assumed position, LatAP, the declination of the observed celestial

body, Dec, and the meridian angle, t, or the local hour angle, LHA, (calculated from the longitude of AP and the GHA
of the object), are the known quantities. 

The first step is calculating the side z of the navigational triangle by using the law of cosines for sides:

Since cos (90°-x) equals sin x and vice versa, the equation can be written in a simpler form:

The side z is not only the great circle distance between AP and GP but also the zenith distance of the celestial object
and the radius of the circle of equal altitude (see chapter 1). 

Substituting the altitude H for z, we get:

Solving the equation for H leads to the altitude formula known from chapter 4:

The altitude thus obtained for a given position is called computed altitude, Hc.
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The azimuth angle of the observed body is also calculated by means of the law of cosines for sides:

 

Using the computed altitude instead of the zenith distance results in the following equation:

Solving the equation for Az finally yields the azimuth formula from chapter 4:

The arccos function returns angles between 0° and 180°. Therefore, the resulting azimuth angle is not necessarily
identical with the true azimuth, AzN (0°... 360°, measured clockwise from true north) commonly used in navigation.

In all cases where t is negative (GP east of AP) , AzN equals Az. Otherwise (t positive, GP westward from AP as

shown in Fig. 11-1), AzN is obtained by subtracting Az from 360°. 

When the meridian angle, t, (or the local hour angle, LHA) is the quantity to be calculated (time sight, Sumner's
method), Dec, LatAP (the assumed latitude), and z (or H) are the known quantities.

Again, the law of cosines for sides is applied:

The obtained meridian angle, t (or LHA),  is then used as described in chapter 4 and chapter 5.

When observing a celestial body at the time of meridian passage (e. g., for determining one's latitude), the local hour
angle is zero, and the navigational triangle becomes infinitesimally narrow. In this case, the formulas of spherical
trigonometry are not needed, and the sides of the spherical triangle can be calculated by simple addition or subtraction.

The Divided Navigational Triangle 

An alternative method for solving the navigational triangle is based upon two right spherical triangles obtained by
constructing a great circle passing through GP and intersecting the local meridian perpendicularly at X (Fig. 11-2).
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The first right triangle is formed by PN, X, and GP, the second one by GP, X, and AP. The auxiliary parts R and K

are intermediate quantities used to calculate z (or Hc) and Az. K is the geographic latitude of X. Both triangles are
solved using Napier's rules of circular parts (see chapter 9). Fig. 11-3 illustrates the corresponding circular
diagrams:

According to Napier's rules, Hc and Az are calculated by means of the following formulas:

Substitute 180°−K for K in the following equation if t > 90° (or  90° < LHA < 270°).

For further calculations, substitute 180°−Az for Az if K and Lat have opposite signs or if |K| < |Lat|.
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To obtain the true azimuth, AzN (0°... 360°), the following rules have to be applied:

The divided navigational triangle is of considerable importance since it forms the theoretical background for a number
of sight reduction tables, e.g., the Ageton Tables (see below). It is also used for great circle navigation (chapter 12).

Using the secant and cosecant function (sec x = 1/cos x, csc x = 1/sin x), we can write the equations for the divided
navigational triangle in the following form:

Substitute 180°−K for K in the following equation if t > 90°:

Substitute 180°−Az for Az if K and Lat have opposite signs or if K<Lat.

In logarithmic form, these equations are stated as:

With the logarithms of the secants and cosecants of angles arranged in the form of a suitable table, we can solve a
sight by a sequence of simple additions and subtractions. Apart from the table itself, the only tools required are a sheet
of paper and a pencil.

The Ageton Tables (H.O. 211), first published in 1931, are based upon the above formulas and provide a very efficient
arrangement of angles and their log secants and log cosecants on 36 pages. Since all calculations are based on absolute
values, certain rules included in the instructions have to be observed.

Sight reduction tables were developed many years before electronic calculators became available in order to simplify
calculations necessary to reduce a sight. Still today, sight reduction tables are preferred by people who do not want to
deal with the formulas of spherical trigonometry. Moreover, they provide a valuable backup method if electronic
devices fail.

Two modified versions of the Ageton Tables are available at:  http://www.celnav.de/page3.htm
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Chapter 12

General Formulas for Navigation

Although the following formulas are not part of celestial navigation, they are indispensible because they are necessary
to calculate distance and direction (course) from the point of departure, A, to the point of arrival, B, as well as to
calculate the position of B from the position of A if course and distance are known. The true course, C, is the angle
made by the vector of motion and the local meridian. It is measured from true north (clockwise through 360°).
Knowing the coordinates of A, LatA and LonA, and the coordinates of B, LatB and LonB, the navigator has the

principal choice between rhumb line navigation (simple procedure but longer distance) and great circle navigation
(shortest possible distance on a sphere). Combinations of both methods are possible.

Rhumb Line Navigation 

A rhumb line, also called loxodrome, is a line on the surface of the earth intersecting all meridians at a constant
angle, C. Thus, a rhumb line is represented by a straight line on a Mercartor chart (see chapter 13) which makes
voyage planning quite simple. On a globe, a rhumb line forms a spherical spiral extending from pole to pole unless it
is identical with a meridian (C = 0° or 180°) or a parallel of latitude (C = 90° or 270°). A vessel steering a constant
course travels along a rhumb line, provided there is no drift. Rhumb line course, C, and distance, d, are calculated as
shown below. First, we imagine traveling the infinitesimal distance dx from the point of departure, A, to the point of
arrival, B. Our course is C (Fig. 12-1):

The distance, dx, is the vector sum of a north-south component, dLat, and a west-east component, dLon . cos Lat. The
factor cos Lat is the relative circumference of the respective parallel of latitude (equator = 1):

If the distance between A (defined by LatA and LonA) and B (defined by LatB and LonB) is a measurable quantity, we

have to integrate:
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Measuring angles in degrees and solving for C, we get:

The term LonB-LonA has to be in the range between �180° tand +180°. If it is outside this range, we have to add

or subtract 360° before entering the rhumb line course formula.

The arctan function returns values between -90° and +90°. To obtain the true course (0°...360°), we apply the
following rules:

 

To find the total length of the rhumb line track, we calculate the infinitesimal distance dx:

The total length d is found through integration:

Finally, we get:

If both positions have the same latitude, the distance can not be calculated using the above formulas. In this case, the
following formulas apply (C is either 90° or 270°):
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Great Circle Navigation

Great circle distance, dAB, and course, CA, are calculated on the analogy of zenith distance and azimuth. For this

pupose, we consider the navigational triangle (see chapter 11) and substitute A for GP, B for AP, dAB for z, and

�LonAB (difference of longitude) for LHA (Fig. 12-2):

Northern latitude and eastern longitude are positive, southern latitude and western longitude negative. A great circle
distance has the dimension of an angle. To measure it in distance units, we multiply it by 40031.6/360 (distance in
km) or by 60 (distance in nm).

If the term sin (LonB-LonA) is negative, we replace CA with 360°-CA in order to obtain the true course (0°... 360°

clockwise from true north).

In Fig. 12-2, CA is the initial great circle course, CB the final great circle course. Since the angle between the great

circle and the respective local meridian varies as we progress along the great circle (unless the great circle coincides
with the equator or a meridian), we can not steer a constant course as we would when following a rhumb line.

Theoretically, we have to adjust the course continually. This is possible with the aid of navigation computers and
autopilots. If such means are not available, we have to calculate an updated course at certain intervals (see below).

Great circle navigation requires more careful voyage planning than rhumb line navigation. On a Mercator chart (see
chapter 13), a great circle track appears as a line bent towards the equator. As a result, the navigator may need more
information about the intended great circle track in order to verify if it leads through navigable areas.

With the exception of the equator, every great circle has two vertices, the points farthest from the equator. The
vertices have the same absolute value of latitude (with opposite sign) but are 180° apart in longitude. At each vertex
(also called apex), the great circle is tangent to a parallel of latitude, and C is either 90° or 270° (cos C = 0). Thus, we
have a right spherical triangle formed by the north pole, PN, the vertex,V, and the point of departure, A (Fig. 12-3):
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To derive the formulas needed for the following calculations, we use Napier's rules of circular parts (Fig. 12-4). The
right angle is at the bottom of the circular diagram. The five parts are arranged clockwise.

First, we need the latitude of the vertex, LatV:

Solving for LatV, we get:

The absolute value of sin CA is used to make sure that LatV does not exceed ±90° (the arccos function returns values

between 90° and 180° for negative arguments). The equation has two solutions, according to the number of vertices.
Only the vertex lying ahead of us is relevant to voyage planning. It is found using the following modified formula:

sng(x) is the signum function:

If V is located between A and B (like shown in Fig. 12-3), our latitude passes through an extremum at the instant we
reach V. This does not happen if B is between A and V.
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Knowing LatV, we are able to calculate the longitude of V. Again, we apply Napier's rules:

Solving for �LonAV, we get:

The longitude of V is

(Add or subtract 360° if necessary.)

The term sng (sin CA) in the above formula provides an automatic correction for the sign of  �LonAV.

Knowing the position of V (defined by LatV and LonV), we are now able to calculate the position of any chosen point,

X, on the intended great circle track (substituting X for A in the right spherical triangle). Using Napier's rules once
more, we get:

Further, we can calculate the course at the point X:

Alternatively, CX can be calculated from the oblique spherical triangle formed by X, PN, and B.

The above formulas enable us to establish suitably spaced waypoints on the great circle and connect them by straight
lines on the Mercator chart. The series of legs thus obtained, each one being a rhumb line track, is a practical
approximation of the intended great circle track. Further, we are now able to see beforehand if there are obstacles in
our way.

  
Mean latitude

Because of their simplicity, the mean latitude formulas are often used in everyday navigation. Mean latitude is a good
approximation for rhumb line navigation for short and medium distances between A and B. The method is less
suitable for polar regions (convergence of meridians).

Course:

             

The true course is obtained by applying the same rules to C as to the rhumb line course (see above).

Distance:
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If C = 90° or C = 270°, we have use the following formulas:

Dead Reckoning

Dead reckoning is the navigational term for extrapolating one's new position, B, from the previous position, A, the
course C, and the distance, d (calculated from the vessel's average speed and time elapsed). The position thus obtained
is called a dead reckoning position, DRP.

Since a DRP is only an approximate position (due to the influence of drift, etc.), the mean latitude method (see above)
provides sufficient accuracy. On land, dead reckoning is of limited use since it is usually not possible to steer a
constant course (apart from driving in large, entirely flat areas like, e.g., salt flats).

At sea, the DRP is needed to choose a suitable AP for the intercept method. If celestial observations are not possible
and electronic navigation aids not available, dead reckoning may be the only way of keeping track of one's position.
Apart from the very simple graphic solution, there are two formulas for the calculation of the DRP. 

Calculation of new latitude:

Calculation of new longitude:

If the resulting longitude is greater than +180°, we subtract 360°. If it is smaller than  -180°, we add 360°.

If our movement is composed of several components (including drift, etc.), we have to replace the terms d�cos C and
d�sin C with

 d
i
�cosC

i
and  d

i
�sinC

i
, respectively.
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Chapter 13

Charts and Plotting Sheets

Mercator Charts

Sophisticated navigation is not possible without the use of a map (chart), a projection of a certain area of the earth's
surface with its geographic features on a plane. Among the numerous types of map projection, the Mercator
projection, named after the Flemish-German cartographer Gerhard Kramer (Latin: Gerardus Mercator), is mostly
used in navigation because it produces charts with an orthogonal grid which is most convenient for measuring
directions and plotting lines of position. Further, rhumb lines appear as straight lines on a Mercator chart. Great
circles do not, apart from meridians and the equator which are also rhumb lines.

In order to construct a Mercator chart, we have to remember how the grid printed on a globe looks. At the equator, an
area of, e. g., 2 by 2 degrees looks almost like a square, but it appears as a narrow trapezoid when we place it near one
of the poles. While the distance between two adjacent parallels of latitude is constant, the distance between two
meridians becomes progressively smaller as the latitude increases because the meridians converge to the poles. An
area with the infinitesimal dimensions dLat and dLon would appear as an oblong with the dimensions dx and dy on
our globe (Fig. 13-1): 

dx contains the factor cos Lat since the circumference of a parallel of latitude is proportional to cos Lat. The constant
c' is the scale factor of the globe (measured in, e. g., mm/°).

Since we require any rhumb line to appear as a straight line intersecting all meridians at a constant angle, meridians
have to be equally spaced vertical lines on our chart, and any infinitesimal oblong defined by dLat and dLon must
have the same aspect ratio as on the globe (dy/dx = const.) at a given latitude (conformality). Therefore, if we

transfer the oblong defined by dLat and  dLon from the globe to our chart, we get the dimensions:

The new constant c is the scale factor of the chart. Now, dx remains constant (parallel meridians), but dy is a function
of the latitude at which our small oblong is located. To obtain the smallest distance from any point with the latitude
LatP to the equator, we integrate:

Y is the distance of the respective parallel of latitude from the equator. In the above equation, angles are given in
circular measure (radians). If we measure angles in degrees, the equation is stated as:
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The distance of any point from the Greenwich meridian (Lon = 0°) varies proportionally with the longitude of the
point, LonP. X is the distance of the respective meridian from the Greenwich meridian: 

Fig. 13-2 shows an example of the resulting graticule (10° spacing). While meridians of longitude appear as equally
spaced vertical lines, parallels of latitude are horizontal lines drawn farther apart as the latitude increases. Y would be
infinite at 90° latitude.

Mercator charts have the disadvantage that geometric distortions increase as the distance from the equator increases.
The Mercator projection is therefore not suitable for polar regions. A circle of equal altitude, for example, would
appear as a distorted ellipse at higher latitudes. Areas near the poles, e. g., Greenland, appear much greater on a
Mercator map than on a globe.

It is often said that a Mercator chart is obtained by projecting each point of the surface of a globe from the center of
the globe to the inner surface of a hollow cylinder tangent to the globe at the equator. This is only a rough
approximation. As a result of such a (purely geometrical) projection, Y would be proportional to tan Lat, and
conformality would not be achieved.

Plotting Sheets

If we magnify a small part of a Mercator chart, e. g., an area of 30' latitude by 40' longitude, we will notice that the
spacing between the parallels of latitude now seems to be almost constant. An approximated Mercator grid of such a
small area can be constructed by drawing equally spaced horizontal lines, representing the parallels of latitude, and
equally spaced vertical lines, representing the meridians.

The spacing of the parallels of latitude, �y, defines the scale of our chart, e. g., 5mm/nm. The spacing of the
meridians, �x, is a function of the mean latitude, LatM:

A sheet of otherwise blank paper with such a simplified Mercator grid is called a small area plotting sheet and is a
very useful tool for plotting lines of position.
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If a calculator or trigonometric table is not available, the meridian lines can be constructed with the graphic method
shown in Fig. 13-3:

We take a sheet of blank paper and draw the required number of equally spaced horizontal lines (parallels of latitude).
A spacing of 3 - 10 mm per nautical mile is recommended for most applications. 

We draw an auxiliary line intersecting the parallels of latitude at an angle numerically equal to the mean latitude.
Then we mark the map scale (defined by the spacing of the parallels) periodically on this line, and draw the meridian
lines through the points thus located. Compasses can be used to transfer the map scale from the chosen meridian to the
auxiliary line.

Small area plotting sheets are available at nautical book stores.

Gnomonic Charts

For great circle navigation, the gnomonic projection offers the advantage that any great circle appears as a straight
line. Rhumb lines, however, are curved. A gnomonic chart is obtained by projecting each point on the earth's surface
from the earth's center to a plane tangent to the surface. Since the distance of a projected point from the point of
tangency varies in proportion with the tangent of the angular distance of the original point from the point of tangency,
a gnomonic chart covers less than a hemisphere, and distortions increase rapidly with increasing distance from the
point of tangency. In contrast to the Mercator projection, the gnomonic projection is non-conformal (not angle-
preserving).

There are three types of gnomonic projection:

If the plane of projection is tangent to the earth at one of the poles (polar gnomonic chart), the meridians appear as
straight lines radiating from the pole. The parallels of latitude appear as concentric circles. The spacing of the latter
increases rapidly as the polar distance increases.

If the point of tangency is on the equator (equatorial gnomonic chart), the meridians appear as straight lines parallel
to each other. Their spacing increases rapidly as their distance from the point of tangency increases. The equator
appears as a straight line perpendicular to the meridians. All other parallels of latitude (small circles) are lines curved
toward the respective pole. Their curvature increases with increasing latitude.

In all other cases (oblique gnomonic chart), the meridians appear as straight lines converging at the elevated pole.

The equator appears as a straight line perpendicular to the central meridian (the meridian going through the point of
tangency). Parallels of latitude are lines curved toward the poles.
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Fig. 13-4 shows an example of an oblique gnomonic chart. 

             Fig. 13-4      

A gnomonic chart is a useful graphic tool for long-distance voyage planning. The intended great circle track is plotted
as a straight line from A to B. Obstacles, if existing, become visible at once. The coordinates of the chosen waypoints
(preferably those lying on meridian lines) are then read from the graticule and transferred to a Mercator chart, where
the waypoints are connected by rhumb line tracks.
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Chapter 14

Magnetic Declination

Since the magnetic poles of the earth do not coincide with the geographic poles and due to other irregularities of the
earth's magnetic field, the horizontal component of the magnetic field at a given position, called magnetic meridian,
usually forms an angle with the local geographic meridian. This angle is called magnetic declination or, in mariner's
language, magnetic variation. Accordingly, the needle of a magnetic compass, aligning itself with the local magnetic
meridian, does not exactly indicate the direction of true north (Fig. 14-1).

Magnetic declination varies with the observer's geographic position and can exceed ±30° or even more in some areas.
Knowledge of the local magnetic declination is therefore necessary to avoid dangerous navigation errors. Although
magnetic declination is often given in the legend of topographic maps, the information may be outdated because
magnetic declination varies with time (up to several degrees per decade). In some places, it may even differ from
official statements due to local distortions of the magnetic field caused by deposits of lava, ferromagnetic ores, etc.

The time azimuth formula described in chapter 4 is a very useful tool to determine the magnetic declination at a given
position. If the observer does not know his exact position, an estimate will suffice in most cases. A sextant is not
required for the simple procedure:

1. We choose a celestial body being low in the sky or on the visible horizon, preferably sun or moon. We measure the
magnetic compass bearing, B, of the center of the body and note the time. The vicinity of cars, steel objects,
magnets, DC power cables, etc. has to be avoided since they distort the magnetic field locally.

2. We extract GHA and Dec of the body from the Nautical Almanac or calculate these quantities with a computer
almanac.

3. We calculate the meridian angle, t (or the local hour angle, LHA), from GHA and our longitude (see chapter 4).

4. We calculate the true azimuth, AzN, of the body from Lat, Dec, and t. The time azimuth formula (chapter 4) with

its accompanying rules is particularly suitable for this purpose since it does not require an observed or computed
altitude.

5. Magnetic declination, MD, is obtained by subtracting AzN from the compass bearing, B.

(Add 360° if the angle thus obtained is smaller than �180°. Subtract 360° if the angle is greater than +180°.)

Eastern declination (shown in Fig. 14-1) is positive (0°...+180°), western declination negative  (0°...�180°).
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Chapter 15

Ephemerides of the Sun

The sun is probably the most frequently observed body in celestial navigation. Greenwich hour angle and declination
of the sun as well as GHAAries and EoT can be calculated using the algorithms listed below [8,17]. The formulas are

relatively simple and useful for navigational calculations with programmable pocket calculators (10 digits
recommended).

First, the time variable, T, has to be calculated from year, month, and day. T is the time, measured in days and
fractions of a day, before or after Jan 1, 2000, 12:00:00 UT:

y is the number of the year (4 digits), m is the number of the month, and d the number of the day in the respective
month. UT is Universal Time in decimal format (e.g., 12h 30m 45s = 12.5125). For May 17, 1999, 12:30:45 UT, for
example, T is -228.978646. The equation is valid from March 1, 1900 through February 28, 2100.

floor(x) is the greatest integer smaller than x. For example, floor(3.8) = 3, floor(-2.2) = -3. The floor function is part of many
programming languages, e.g., JavaScript. In general, it is identical with the int function used in other languages. However, there
seem to be different definitions for the int function. This should be checked before programming the above formula.

Mean anomaly of the sun*:

Mean longitude of the sun*:

True longitude of the sun*:

Obliquity of the ecliptic:

Declination of the sun:

Right ascension of the sun (in degrees)*:

15-1

T = 367� y � floor {1.75�[ y � floor �m � 9

12 � ] }� floor �275� m

9 �� d �
UT [h ]

24
� 730531.5

g[°] = 0.9856003�T � 2.472

LT [° ] = LM [° ]� 1.915�sin g � 0.02�sin �2�g�

LM [° ] = 0.9856474�T � 79.53938

� [° ] = 23.439 � 4�T �10
�7

Dec [° ] = arcsin �sin LT�sin ��

RA [° ] = 2�arctan
cos��sin LT

cosDec � cos LT



GHAAries
*:

Greenwich hour angle of the sun*:

*These quantities have to be within the range between 0° and 360°. If necessary, add or subtract 360° or multiples thereof. This can
be achieved using  the following algorithm which is particularly useful for programmable calculators:

Equation of Time:

(If GAT > 24h, subtract 24h.)

EoT [ h] = GAT [h] �UT [h]

(If  EoT > +0.3h, subtract 24h. If  EoT < �0.3h, add 24h.)

Semidiameter and Horizontal Parallax

Due to the excentricity of the earth's orbit, semidiameter and horizontal parallax of the sun change periodically during
the course of a year. The SD of the sun varies inversely with the distance earth-sun, R:

(1 AU = 149.6 . 106 km)

SD [ ' ] =
16.0

R [AU ]

The mean horizontal parallax of the sun is approx. 0.15'. The periodic variation of HP is too small to be of practical significance.

Accuracy

The maximum error of GHA and Dec is about ±0.6'. Results have been cross-checked with Interactive Computer

Ephemeris 0.51 (accurate to approx. 0.1'). Between the years 1900 and 2049, the error was smaller than ±0.3' in most

cases (100 dates chosen at random). EoT was accurate to approx. ±2s. In comparison, the maximum error of GHA and

Dec extracted from the Nautical Almanac is approx. ±0.25' (for the sun) when using the interpolation tables. The error

of SD is smaller than ±0.1'.
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Chapter 16

Navigational Errors

Altitude errors

Apart from systematic errors which can be corrected to a large extent (see chapter 2), observed altitudes always
contain random errors caused by ,e.g., heavy seas, abnormal atmospheric refraction, and the limited optical resolution
of the human eye. Although good sextants are manufactured to a mechanical precision of ca. 0.1'- 0.3', the standard
deviation of an altitude measured with a marine sextant is approximately 1' under fair working conditions. The
standard deviation may increase to several arcminutes due to disturbing factors or if a bubble sextant or a plastic
sextant is used. Altitudes measured with a theodolite are considerably more accurate (0.1'- 0.2'). 

Due to the influence of random observation errors, lines of position are more or less indistinct and are better
considered as bands of position. 

Two intersecting bands of position define an area of position (ellipse of uncertainty). Fig. 16-1 illustrates the
approximate size and shape of the ellipse of uncertainty for a given pair of position lines. The standard deviations (±x
for the first altitude, ±y for the second altitude) are indicated by grey lines.

 

The area of position is smallest if the angle between the bands is 90°. The most probable position is at the center of the
area, provided the error distribution is symmetrical. Since position lines are perpendicular to their corresponding
azimuth lines, objects should be chosen whose azimuths differ by approx. 90° for best accuracy. An angle between 30°
and 150°, however, is tolerable in most cases. 

When observing more than two bodies, the azimuths should have a roughly symmetrical distribution (bearing
spread). With multiple observations, the optimum horizontal angle between two adjacent bodies is obtained by
dividing 360° by the number of observed bodies (3 bodies: 120°, 4 bodies: 90°, 5 bodies: 72°, 6 bodies: 60°, etc.). 

A symmetrical bearing spread not only improves geometry but also compensates for systematic errors like, e.g., index
error. 

Moreover, there is an optimum range of altitudes the navigator should choose to obtain reliable results. Low altitudes
increase the influence of abnormal refraction (random error), whereas high altitudes, corresponding to circles of equal
altitude with small diameters, increase geometric errors due to the curvature of position lines. The generally
recommended range to be used is 20° - 70°, but exceptions are possible. 

16-1



Time errors

The time error is as important as the altitude error since the navigator usually presets the instrument to a chosen
altitude and records the time at the instant the image of the body coincides with the reference line visible in the
telescope. The accuracy of time measurement is usually in the range between a fraction of a second and several
seconds, depending on the rate of change of altitude and other factors. Time error and altitude error are closely
interrelated and can be converted to each other, as shown below (Fig. 16-2):

The GP of any celestial body travels westward with an angular velocity of approx. 0.25' per second. This is the rate of
change of the local hour angle of the observed body caused by the earth's rotation. The same applies to each circle of
equal altitude surrounding GP (tangents shown in Fig. 6-2). The distance between two concentric circles of equal
altitude (with the altitudes H1 and H2) passing through AP in the time interval dt, measured along the parallel of

latitude going through AP is:

dx is also the east-west displacement of a LoP caused by the time error dt. The letter d indicates a small (infinitesimal)
change of a quantity (see mathematical literature). The cosine of LatAP is the ratio of the circumference of the parallel

of latitude going through AP to the circumference of the equator (Lat = 0). 

The corresponding difference in altitude (the radial distance between both circles of equal altitude) is:

Thus, the rate of change of altitude is:

dH/dt is greatest when the observer is on the equator and decreases to zero as the observer approaches one of the poles.
Further, dH/dt is greatest if GP is exactly east of AP (dH/dt positive) or exactly west of AP (dH/dt negative). dH/dt is
zero if the azimuth is 0° or 180°. This corresponds to the fact that the altitude of the observed body passes through a
minimum or maximum at the instant of meridian transit (dH/dt = 0). 

The maximum or minimum of altitude occurs exactly at meridian transit only if the declination of a body is constant.
Otherwise, the highest or lowest altitude is observed shortly before or after meridian transit (chapter 6). The
phenomenon is particularly obvious when observing the moon whose declination changes rapidly. 

A chronometer error is a systematic time error (chapter 17). It influences each line of position in such a way that
only the longitude of a fix is affected whereas the latitude remains unchanged, provided the declination does not
change significantly (moon!).

16-2

dx [ nm] = 0.25�cos Lat
AP

�dt [s]

dH [' ] = sin Az
N
�dx [ nm]

dH [ ' ]

dt [s ]
= 0.25�sin Az

N
�cos Lat

AP



A chronometer being 1 s fast, for example, displaces a fix by 0.25' to the west, a chronometer being 1 s slow displaces
the fix by the same amount to the east. If we know our position, we can calculate the chronometer error from the
difference between our true longitude and the longitude found by our observations. If we do not know our longitude,
the approximate chronometer error can be found by lunar observations (chapter 7).

Ambiguity

Poor geometry may not only decrease accuracy but may even result in an entirely wrong fix. As the observed
horizontal angle (difference in azimuth) between two objects approaches 180°, the distance between the points of
intersection of the corresponding circles of equal altitude becomes very small (at exactly 180°, both circles are tangent
to each other). Circles of equal altitude with small diameters resulting from high altitudes also contribute to a short
distance. A small distance between both points of intersection, however, increases the risk of ambiguity (Fig. 16-3).

In cases where � due to a horizontal angle near 180° and/or very high altitudes � the distance between both points of
intersection is too small, we can not be sure that the assumed position is always close enough to the actual position. 

If AP is close to the actual position, the fix obtained by plotting the LoP's (tangents) will be almost identical with the
actual position. The accuracy of the fix decreases as the distance of AP from the actual position becomes greater. The
distance between fix and actual position increases dramatically as AP approaches the line going through GP1 and GP2
(draw the azimuth lines and tangents mentally). In the worst case, a position error of several hundred or even
thousand nm may result ! 

If AP is exactly on the line going through GP1 and GP2, i.e., equidistant from the actual position and the second point
of intersection, the horizontal angle between GP1 and GP2, as viewed from AP, will be 180°. In this case, both LoP's
are parallel to each other, and no fix can be found. 

As AP approaches the second point of intersection, a fix more or less close to the latter is obtained. Since the actual
position and the second point of intersection are symmetrical with respect to the line going through GP1 and GP2, the
intercept method can not detect which of both theoretically possible positions is the right one. 

Iterative application of the intercept method can only improve the fix if the initial AP is closer to the actual position
than to the second point of intersection. Otherwise, an "improved" wrong position will be obtained. 

Each navigational scenario should be evaluated critically before deciding if a fix is reliable or not. The distance
from AP to the observer's actual position has to be considerably smaller than the distance between actual
position and second point of intersection. This is usually the case if the above recommendations regarding
altitude, horizontal angle, and distance between AP and actual position are observed.
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A simple method to improve the reliability of a fix

Each altitude measured with a sextant, theodolite, or any other device contains systematic and random errors which
influence the final result (fix). Systematic errors are more or less eliminated by careful calibration of the instrument
used. The influence of random errors decreases if the number of observations is sufficiently large, provided the error
distribution is symmetrical. Under practical conditions, the number of observations is limited, and the error
distribution is more or less unsymmetrical, particularly if an outlier, a measurement with an abnormally large error, is
present. Therefore, the average result may differ significantly from the true value. When plotting more than two lines
of position, the experienced navigator may be able to identify outliers by the shape of the error polygon and remove the
associated LoP's. However, the method of least squares, producing an average value, does not recognize outliers and
may yield an inaccurate result.  

The following simple method takes advantage of the fact that the median of a number of measurements is much less
influenced by outliers than the mean value:

1. We choose a celestial body and measure a series of altitudes. We calculate azimuth and intercept for each
observation of said body. The number of measurements in the series has to be odd (3, 5, 7...). The reliability of the
method increases with the number of observations. 

2. We sort the calculated intercepts by magnitude and choose the median (the central value in the array of intercepts
thus obtained) and its associated azimuth. We discard all other observations of the series.

3. We repeat the above procedure with at least one additional body (or with the same body after its azimuth has
become sufficiently different).

4. We plot the lines of position using the azimuth and intercept selected from each series, or use the selected data to
calculate the fix with the method of least squares (chapter 4).

The method has been checked with excellent results on land. At sea, where the observer's position usually changes
continually, the method has to be modified by advancing AP according to the path of travel between the observations
of each series.
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Chapter 17

The Marine Chronometer

A marine chronometer is a precise timepiece kept on board as a portable time standard. In former times, the
chronometer time was usually checked (compared with an optical time signal) shortly before departure. During the
voyage, the chronometer had to be reliable enough to avoid dangerous longitude errors (chapter 16) even after weeks
or months at sea. Today, radio time signals, e. g., WWV, can be received around the world, and the chronometer can
be checked as often as desired during a voyage. Therefore, a common quartz watch of reasonable quality is suitable for
most navigational tasks if checked periodically, and the marine chronometer serves more or less as a back-up.

The first mechanical marine chronometer of sufficient precision was built by Harrison in 1736. Due to the exorbitant
price of early chronometers it took decades until the marine chronometer became part of the standard navigation
equipment. In the meantime, the longitude of a ship was mostly determined by lunar distance (chapter 7).

During the second half of the 20th century quartz chronometers replaced the mechanical ones almost entirely because
they are much more accurate, cheaper to manufacture, and almost maintenance-free.

Today, mechanical chronometers are valued collector's items since there are only few manufacturers left. Fig. 7-1
shows a POLJOT (�����) 6MX, a traditional chronometer made in Russia. Note that the timepiece is suspended in
gimbals to reduce the influence of ship movements (torque) on the balance wheel.

                     Fig 7-1                         

Usage

Shortly before an astronomical observation, the navigator starts a stop-watch at a chosen integer hour or minute
displayed by the chronometer and makes a note of the chronometer reading. Also before the observation, the sextant or
theodolite is set to a chosen altitude (unless a maximum or minimum altitude is to be observed). During the
observation itself, the time is stopped at the instant the observed body makes contact with the horizontal reference line
in the telescope of the instrument. This may be the sea horizon (sextant) or the cross hairs (theodolite). The sum of the
previously noted chronometer time and the time measured with the stop-watch is the chronometer time of observation.

Using a chronometer, the navigator has to know a number of quantities since there is no guarantee that time signals
are available at any time.

The chronometer error, CE, is the difference between chronometer time (time displayed by chronometer) and UT at
a given instant (usually the last chronometer check).

The most important individual characteristic of a chronometer is the chronometer rate, the change of the
chronometer error during a chosen time interval. The daily rate is measured in seconds per 24 hours. For better
accuracy, the daily rate is usually obtained by measuring the change of the chronometer error within a 10-day period
and deviding the result by 10. The chronometer rate can be positive (chronometer gaining) or negative (chronometer
losing).

Knowing the initial error and daily rate, we can extrapolate the current UT from the current chronometer time and the
number of days and hours expired since the last chronometer check.
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The correction formula is:                   UT P = T Chrono�CEinit��n�
m

24
��DR

UTP Predicted UT
TChrono Chronometer time
CEinit Initial chronometer error
DR Daily rate
n Integer number of days expired since last chronometer check
m Additional number of hours expired

The daily rate of a chronometer is not constant but subject to systematic changes. Therefore it should be measured
periodically. At the beginning of the service life, the daily rate of a chronometer changes and finally approaches a
more or less constant value (�running in�). Temperature variations also affect the daily rate. The temperature
coefficient is the change of daily rate caused by a certain temperature variation. Chronometers are temperature-
compensated. Therefore, the temperature coefficient of a mechanical marine chronometer is small, typically about
±0.1 s/K per day.

Moreover, the daily rate exhibits random fluctuations, called daily rate-variation, DRV. The latter is the difference
between the daily rates measured on two consecutive days (day i and day i+1, respectively).

Variations in daily rate are usually small but should be monitored regularly. A daily rate-variation outside the range
specified by the manufacturer may indicate a mechanical problem, e. g., abnormal wear. In such a case, the instrument
needs overhauling or repair. The standard deviation of a series of n (usually 10) consecutive daily rate-variations, may
be regarded as a �quality index�, � [22].

The following table shows a series of measurements made with a mechanical chronometer (POLJOT 6MX #22787) at
room temperature. Like most mechanical marine chronometers, the 6MX has a half-second beat. The chronometer
time was compared with UTC (radio-controlled watch, 1-second beat). Therefore, all values have been rounded to the
next half second.

Day CE [s] DR [s]   (1st Diff.) DRV[s]   (2nd Diff.) DRV2 [s2]

0 41

-2

1 39 -1 1

-3

2 36 0.5 0.25

-2.5

3 33.5 -0.5 0.25

-3

4 30.5 0 0

-3

5 27.5 0.5 0.25

-2.5

6 25 -0.5 0.25

-3

7 22 0.5 0.25

-2.5

8 19.5 -0.5 0.25

-3

9 16.5 0 0

-3

10 13.5 0.5 0.25

-2.5

11 11 Sum: 2.75

The mean daily rate of the chronometer (first 10 days) is -2.75 s (specification: ±3.5 s). The maximum variation in
daily rate is -1 s (specification: ±2.3 s). The �quality index� � is ±0.52 s (not specified).
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ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document 
and put the following copyright and license notices just after the title page:

    Copyright (C)  YEAR  YOUR NAME.
    Permission is granted to copy, distribute and/or modify this document
    under the terms of the GNU Free Documentation License, Version 1.3
    or any later version published by the Free Software Foundation;
    with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
    A copy of the license is included in the section entitled "GNU
    Free Documentation License".



If you have Invariant  Sections,  Front-Cover  Texts and Back-Cover  Texts,  replace the "with � 
Texts." line with this:

    with the Invariant Sections being LIST THEIR TITLES, with the
    Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge 
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these 
examples in parallel under your choice of free software license, such as the GNU General Public 

License, to permit their use in free software. 


